Acute Resistance Exercise: Physiological and Biomechanical Alterations During a Subsequent Swim Training Session

2020 ◽  
Vol 15 (1) ◽  
pp. 105-112
Author(s):  
Gavriil G. Arsoniadis ◽  
Gregory C. Bogdanis ◽  
Gerasimos Terzis ◽  
Argyris G. Toubekis

Purpose: To examine the acute effect of dry-land strength training on physiological and biomechanical parameters in a subsequent swim training session. Methods: Twelve male swimmers (age: 19.0 [2.2] y, peak oxygen uptake: 65.5 [11.4] mL·kg−1·min−1) performed a 5 × 200-m test with progressively increasing intensity. Blood lactate (BL) concentration was measured after each 200-m bout, and the speed corresponding to 4 mmol·L−1 (V4) was calculated. In the experimental (EXP) and control (CON) conditions, swimmers participated in a swim training session consisting of 1000-m warm-up, a bout of 10-second tethered swimming sprint, and 5 × 400 m at V4. In EXP condition, swimmers completed a dry-land strength training session (load: 85% of 1-repetition maximum) 15 minutes before the swimming session. In CON condition, swimmers performed the swimming session only. Oxygen uptake, BL concentration, arm-stroke rate, arm-stroke length, and arm-stroke efficiency were measured during the 5 × 400 m. Results: Force in the 10-second sprint was not different between conditions (P = .61), but fatigue index was higher in the EXP condition (P = .03). BL concentration was higher in EXP condition and showed large effect size at the fifth 400-m repetition compared with CON condition (6.4 [2.7] vs 4.6 [2.8] mmol·L−1, d = 0.63). During the 5 × 400 m, arm-stroke efficiency remained unchanged, arm-stroke length was decreased from the third repetition onward (P = .01), and arm-stroke rate showed a medium increment in EXP condition (d = 0.23). Conclusions: Strength training completed 15 minutes before a swim training session caused moderate changes in biomechanical parameters and increased BL concentration during swimming. Despite these changes, swimmers were able to maintain force and submaximal speed during the endurance training session.

2019 ◽  
Vol 44 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Alessandro Piras ◽  
Francesco Campa ◽  
Stefania Toselli ◽  
Rocco Di Michele ◽  
Milena Raffi

This investigation examined the effect of partial-body cryostimulation (PBC) performed in the recovery time between a strength training and an interval running (IR) session. Nine rugby players (age, 23.7 ± 3.6 years; body mass index, 28.0 ± 2.6 kg·m−2) were randomly exposed to 2 different conditions: (i) PBC: 3 min at −160 °C, and (ii) passive recovery at 21 °C. We performed the bioelectrical impedance analysis (BIA) and recorded temperature and cardiac autonomic variables at 3 time points: at baseline, after strength training, and after 90 min of recovery. In addition, blood lactate concentration was measured 1 min before and 2.5 min after the IR. Heart rate (HR), energy cost, minute ventilation, oxygen uptake, and metabolic power were assessed during the IR. Homeostatic hydration status was affected by the execution of an intense strength training subsession. Then, after PBC, the BIA vector was restored close to normohydration status. Autonomic variables changed over time in both conditions, although the mean differences and effect sizes were greater in the PBC condition. During IR, HR was 3.5% lower after PBC, and the same result was observed for oxygen uptake (∼4.9% lower) and ventilation (∼6.5% lower). The energy cost measured after cryotherapy was ∼9.0% lower than after passive recovery. Cryotherapy enhances recovery after a single strength training session, and during subsequent IR, it shows a reduction in cardiorespiratory and metabolic parameters. PBC may be useful for those athletes who compete or train more than once in the same day, to improve recovery between successive training sessions or competitions.


2017 ◽  
Vol 232 (3) ◽  
pp. 411-422 ◽  
Author(s):  
David R Broom ◽  
Masashi Miyashita ◽  
Lucy K Wasse ◽  
Richard Pulsford ◽  
James A King ◽  
...  

Acute exercise transiently suppresses the orexigenic gut hormone acylated ghrelin, but the extent to which exercise intensity and duration determine this response is not fully understood. The effects of manipulating exercise intensity and duration on acylated ghrelin concentrations and hunger were examined in two experiments. In experiment one, nine healthy males completed three, 4-h conditions (control, moderate-intensity running (MOD) and vigorous-intensity running (VIG)), with an energy expenditure of ~2.5 MJ induced in both MOD (55-min running at 52% peak oxygen uptake (V.O2peak)) and VIG (36-min running at 75% V.O2peak). In experiment two, nine healthy males completed three, 9-h conditions (control, 45-min running (EX45) and 90-min running (EX90)). Exercise was performed at 70% V.O2peak. In both experiments, participants consumed standardised meals, and acylated ghrelin concentrations and hunger were quantified at predetermined intervals. In experiment one, delta acylated ghrelin concentrations were lower than control in MOD (ES = 0.44, P = 0.01) and VIG (ES = 0.98, P < 0.001); VIG was lower than MOD (ES = 0.54, P = 0.003). Hunger ratings were similar across the conditions (P = 0.35). In experiment two, delta acylated ghrelin concentrations were lower than control in EX45 (ES = 0.77, P < 0.001) and EX90 (ES = 0.68, P < 0.001); EX45 and EX90 were similar (ES = 0.09, P = 0.55). Hunger ratings were lower than control in EX45 (ES = 0.20, P = 0.01) and EX90 (ES = 0.27, P = 0.001); EX45 and EX90 were similar (ES = 0.07, P = 0.34). Hunger and delta acylated ghrelin concentrations remained suppressed at 1.5 h in EX90 but not EX45. In conclusion, exercise intensity, and to a lesser extent duration, are determinants of the acylated ghrelin response to acute exercise.


Author(s):  
Alexandro Andrade ◽  
Ricardo de Azevedo Klumb Steffens ◽  
Sofia Mendes Sieczkowska ◽  
Danilo Reis Coimbra ◽  
Guilherme Torres Vilarino

OBJECTIVE: The aim was to analyze the effect of one session and three sessions of strength training (ST) on pain in women with fibromyalgia (FM). METHOD: Twenty-three women with FM performed three sessions of ST for a week. Each training session worked the main muscle groups and lasted 60 min. Three sets of 12 repetitions were performed with 1 min intervals in between. The load was increased based on the perception of subjective effort of each patient. Pain intensity was evaluated immediately after the first and third sessions using a Fischer digital algometer. RESULTS: After the first ST session, pain reduction was observed. No significant differences were found in pain thresholds on the baseline versus the third session. The analysis of MBI demonstrated that the ST does not worsen patients’ pain, indicating a 52.2% trivial effect and a 39.1% beneficial effect. CONCLUSION: Our results suggest that there is no harmful effect on the pain of women with FM after an acute session of ST. We emphasize that despite the promising results, more studies on the subject are needed to help understand pain in patients with FM.


2020 ◽  
Vol 15 (7) ◽  
pp. 964-970
Author(s):  
David Barranco-Gil ◽  
Lidia B. Alejo ◽  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.


Reumatismo ◽  
2019 ◽  
Vol 71 (3) ◽  
pp. 141-147
Author(s):  
A. Andrade ◽  
R. De Azevedo Klumb Steffens ◽  
S. Mendes Sieczkowska ◽  
D. Reis Coimbra ◽  
G. Torres Vilarino

Fibromyalgia syndrome (FM) is a musculoskeletal disorder characterized by chronic pain and frequently associated changes in mood states. The aim of this study was to analyze the acute effect of strength training (ST) sessions on the mood states of patients with fibromyalgia. A total of 110 FM patients were eligible for this study. After the inclusion criteria, twenty-eight women with FM (mean age: 51.88±10.22 years) performed three sessions of ST. Each training session worked the main muscle groups and lasted 60 min. Three sets of 12 repetitions were performed with 1-min intervals between them. Outcome measures were assessed at baseline, after one session, and after three ST sessions. The Brunel Mood Scale (BRUMS) was used to assess mood states, and the Wilcoxon test was used to verify differences in mood after one and three ST sessions. The ST practice had positive effects on the patients’ mood states after a single session. Reductions in anger, mental confusion, mood depression, fatigue, and tension were observed. The results of the 3rd ST session were similar. We concluded that a single ST session was sufficient to improve the mood states of patients with fibromyalgia.


2013 ◽  
Vol 38 (6) ◽  
pp. 651-656 ◽  
Author(s):  
Kenji Doma ◽  
Glen Bede Deakin

This study examined the acute effect of strength and endurance training sequence on running economy (RE) at 70% and 90% ventilatory threshold (VT) and on running time to exhaustion (TTE) at 110% VT the following day. Fourteen trained and moderately trained male runners performed strength training prior to running sessions (SR) and running prior to strength training sessions (RS) with each mode of training session separated by 6 h. RE tests were conducted at baseline (Base-RE) and the day following each sequence to examine cost of running (CR), TTE, and lower extremity kinematics. Maximal isometric knee extensor torque was measured prior to and following each training session and the RE tests. Results showed that CR at 70% and 90% VT for SR-RE (0.76 ± 0.10 and 0.77 ± 0.07 mL·kg–0.75·m–1) was significantly greater than Base-RE (0.72 ± 0.10 and 0.70 ± 0.11 mL·kg–0.75·m–1) and RS-RE (0.73 ± 0.09 and 0.72 ± 0.09 mL·kg–0.75·m–1) (P < 0.05). TTE was significantly less for SR-RE (237.8 ± 67.4 s) and RS-RE (275.3 ± 68.0 s) compared with Base-RE (335.4 ± 92.1 s) (P < 0.01). The torque during the SR sequence was significantly reduced for every time point following the strength training session (P < 0.05). However, no significant differences were found in torque following the running session (P > 0.05), although it was significantly reduced following the strength training session (P < 0.05) during the RS sequence. These findings show that running performance is impaired to a greater degree the day following the SR sequence compared with the RS sequence.


2016 ◽  
Vol 41 (7) ◽  
pp. 706-713 ◽  
Author(s):  
James P. Raleigh ◽  
Matthew D. Giles ◽  
Trisha D. Scribbans ◽  
Brittany A. Edgett ◽  
Laura J. Sawula ◽  
...  

High-intensity interval training (HIIT) improves peak oxygen uptake (V̇O2peak) and oxygen uptake (V̇O2) kinetics, however, it is unknown whether an optimal intensity of HIIT exists for eliciting improvements in these measures of whole-body oxidative metabolism. The purpose of this study was to (i) investigate the effect of interval intensity on training-induced adaptations in V̇O2peak and V̇O2 kinetics, and (ii) examine the impact of interval intensity on the frequency of nonresponders in V̇O2peak. Thirty-six healthy men and women completed 3 weeks of cycle ergometer HIIT, consisting of intervals targeting 80% (LO), 115% (MID), or 150% (HI) of peak aerobic power. Total work performed per training session was matched across groups. A main effect of training (p < 0.05) and a significant interaction effect was observed for V̇O2peak, with the change in V̇O2peak being greater (p < 0.05) in the MID group than the LO group; however, no differences were observed between the HI group and either the MID or LO groups (ΔV̇O2peak; LO, 2.7 ± 0.7 mL·kg–1·min–1; MID, 5.8 ± 0.7; HI, 4.2 ± 1.0). The greatest proportion of responders was observed in the MID group (LO, 8/12; MID, 12/13; HI, 9/11). A nonsignificant relationship (p = 0.26; r2 = 0.04) was found between the changes in V̇O2peak and τV̇O2. These results suggest that training at intensities around V̇O2peak may represent a threshold intensity above which further increases in training intensity provide no additional adaptive benefit. The dissociation between changes in V̇O2peak and V̇O2 kinetics also reflects the different underlying mechanisms regulating these adaptations.


2020 ◽  
Vol 71 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Nuno Batalha ◽  
Carlos Paixão ◽  
António José Silva ◽  
Mário J. Costa ◽  
John Mullen ◽  
...  

AbstractCompetitive swimmers usually undergo large mileage of daily training, in which propulsive force is produced mainly by the upper limbs. Some studies claim that dry-land shoulder rotators injury prevention programs before the in-water swim practice are paramount. However, the effect of shoulder strengthening prior to water training is unclear. This study aimed to analyse the acute effects of training programs conducted on dry land with the goal of preventing shoulder rotators injuries. A group of young swimmers (N = 23) was recruited to participate in this research. The peak torques of shoulder internal and external rotators were assessed before and after the completion of the compensatory strength training program. The isokinetic assessment was performed using two different protocols: 3 repetitions at 60⍛/s and 20 repetitions at 180⍛/s. Except for a trivial reduction in strength after the training program, there were no other significant differences in any of the studied variables (shoulders rotators endurance, strength and muscle balance). All results showed trivial to small effect sizes. Our findings suggest that a compensatory strength training program does not have a significant acute effect on the strength, endurance and muscle balance of shoulder rotators in young swimmers.


2018 ◽  
Vol 314 (4) ◽  
pp. H853-H862 ◽  
Author(s):  
Ole Kristian Berg ◽  
Stian Kwak Nyberg ◽  
Tobias Midtvedt Windedal ◽  
Eivind Wang

Maximal strength training (MST) improves work efficiency. However, since blood flow is greatly dictated by muscle contractions in arms during exercise and vascular conductance is lower, it has been indicated that arms rely more upon adapting oxygen extraction than legs in response to the enhanced work efficiency. Thus, to investigate if metabolic and vascular responses are arm specific, we used Doppler-ultrasound and a catheter placed in the subclavian vein to measure blood flow and the arteriovenous oxygen difference during steady-state work in seven young men [24 ± 3 (SD) yr] following 6 wk of handgrip MST. As expected, MST improved maximal strength (49 ± 9 to 62 ± 10 kg) and the rate of force development (923 ± 224 to 1,086 ± 238 N/s), resulting in a reduced submaximal oxygen uptake (30 ± 9 to 24 ± 10 ml/min) and concomitantly increased work efficiency (9.3 ± 2.5 to 12.4 ± 3.9%) (all P < 0.05). In turn, the work efficiency improvement was associated with reduced blood flow (486 ± 102 to 395 ± 114 ml/min), mediated by a lower blood velocity (43 ± 8 to 32 ± 6 cm/s) (all P < 0.05). Conduit artery diameter and the arteriovenous oxygen difference remained unaltered. The maximal work test revealed an increased time to exhaustion (949 ± 239 to 1,102 ± 292 s) and maximal work rate (both P < 0.05) but no change in peak oxygen uptake. In conclusion, despite prior indications of metabolic and vascular limb-specific differences, these results reveal that improved work efficiency after small muscle mass strength training in the upper extremities is accompanied by a blood flow reduction and coheres with what has been documented for lower extremities. NEW & NOTEWORTHY Maximal strength training increases skeletal muscle work efficiency. Oxygen extraction has been indicated to be the adapting component with this increased work efficiency in arms. However, we document that decreased blood flow, achieved by blood velocity reduction, is the adapting mechanism responding to the improved aerobic metabolism in the forearm musculature.


Author(s):  
Aurélien Patoz ◽  
Thomas Blokker ◽  
Nicola Pedrani ◽  
Romain Spicher ◽  
Fabio Borrani ◽  
...  

Purpose: Intensity domains are recommended when prescribing exercise, and critical power/speed (CP/CS) was designated the “gold standard” when determining maximal metabolic steady state. CS is the running analog of CP for cycle ergometry. However, a CP for running could be useful for controlling intensity when training in any type of condition. Therefore, this study aimed to estimate external, internal, and total CP (CPext, CPint, and CPtot), obtained based on running power calculations, and verified whether they occurred at the same percentage of peak oxygen uptake as the usual CS. Furthermore, this study examined whether selecting strides at the start, half, or end of the exhaustive runs to calculate running power influenced the estimation of the 3 CPs. Methods: Thirteen male runners performed a maximal incremental aerobic test and 4 exhaustive runs (90%, 100%, 110%, 120% peak speed) on a treadmill. The estimations of CS and CPs were obtained using a 3-parameter mathematical model fitted using weighted least square. Results: CS was estimated at 4.3 m/s while the estimates of CPext, CPint, and CPtot were 5.2, 2.6, and 7.8 W/kg, respectively. The corresponding for CS was 82.5 percentage of peak oxygen uptake and 81.3, 79.7, and 80.6 percentage of peak oxygen uptake for CPext, CPint, and CPtot, respectively. No systematic bias was reported when comparing CS and CPext, as well as the 3 different CPs, whereas systematic biases of 2.8% and 1.8% were obtained for the comparison among CS and CPint and CPtot, respectively. Nonetheless, the for CS and CPs were not statistically different (P = .09). Besides, no effect of the time stride selection for CPs as well as their resulting was obtained (P ≥ .44). Conclusions: The systematic biases among at CS and CPint and CPtot were not clinically relevant. Therefore, CS and CPs closely represent the same fatigue threshold in running. The knowledge of CP in running might prove to be useful for both athletes and coaches, especially when combined with instantaneous running power. Indeed, this combination might help athletes controlling their targeted training intensity and coaches prescribing a training session in any type of condition.


Sign in / Sign up

Export Citation Format

Share Document