Methods for evaluating peak oxygen uptake and anaerobic threshold in upper body of cross-country skiers

1998 ◽  
Vol 30 (6) ◽  
pp. 963-970 ◽  
Author(s):  
ULRIK WISLØFF ◽  
JAN HELGERUD
2021 ◽  
Vol 3 ◽  
Author(s):  
Linda Marie Hansen ◽  
Øyvind Sandbakk ◽  
Gertjan Ettema ◽  
Julia Kathrin Baumgart

Purpose: To investigate the interaction between exercise modality (i.e., upper- and lower-body exercise) and sex in physiological responses and power output (PO) across the entire intensity spectrum (i.e., from low to maximal intensity).Methods: Ten male and 10 female cross-country (XC) skiers performed a stepwise incremental test to exhaustion consisting of 5 min stages with increasing workload employing upper-body poling (UP) and running (RUN) on two separate days. Mixed measures ANOVA were performed to investigate the interactions between exercise modalities (i.e., UP and RUN) and sex in physiological responses and PO across the entire exercise intensity spectrum.Results: The difference between UP and RUN (ΔUP−RUN), was not different in the female compared with the male XC skiers for peak oxygen uptake (18 ± 6 vs. 18 ± 6 mL·kg−1·min−1, p = 0.843) and peak PO (84 ± 18 vs. 91 ± 22 W, p = 0.207). At most given blood lactate and rating of perceived exertion values, ΔUP−RUN was larger in the male compared with the female skiers for oxygen uptake and PO, but these differences disappeared when the responses were expressed as % of the modality-specific peak.Conclusion: Modality-differences (i.e., ΔUP−RUN) in peak physiological responses and PO did not differ between the female and male XC skiers. This indicates that increased focus on upper-body strength and endurance training in female skiers in recent years may have closed the gap between upper- and lower-body endurance capacity compared with male XC skiers. In addition, no sex-related considerations need to be made when using relative physiological responses for intensity regulation within a specific exercise modality.


Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
Richard Davies ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery. Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices. Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 males) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R = 0.57 (CI 0.29–0.76), R = 0.59 (CI 0.31–0.77) and R = 0.62 (CI 0.35–0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01–0.64), R = 0.39 (CI 0.04–0.66) and R = 0.42 (CI 0.07–0.68) respectively) and peak work (R = 0.56 (CI 0.27–0.75), R = 0.48 (CI 0.17–0.70) and R = 0.50 (CI 0.2–0.72) respectively). Receiver operator curve (ROC) analysis for direct and self-reported measures of 7-day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work. Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment. Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24 January 2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.


1993 ◽  
Vol 10 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Kenneth Coutts ◽  
Donald McKenzie ◽  
Christine Loock ◽  
Richard Beauchamp ◽  
Robert Armstrong

The purpose of this study was to describe the upper body exercise capabilities of youth with spina bifida, which would permit comparison of their abilities to norms. Forty-two children with spina bifida age 7 to 18 years were tested for maximal handgrip strength, anaerobic arm-crank power output, and peak arm-crank oxygen uptake. Analysis of variance was used to compare age, gender, and level of disability differences within the total sample. This analysis indicated no significant effect of level of disability on any of the upper body exercise capacity measures. Significant gender and age effects were noted for grip strength and anaerobic and aerobic capabilities. The sample exhibited handgrip strength comparable to that of nondisabled youth but low anaerobic power and peak oxygen uptake values. Some individual subjects, however, had “normal” values for all tests suggesting that a lower level of participation in regular physical activity rather than spina bifida per se may be responsible for the generally lower physical capacity found in the total sample.


1993 ◽  
Vol 18 (4) ◽  
pp. 359-365 ◽  
Author(s):  
Phillip B. Watts ◽  
Jon Eric Sulentic ◽  
Kip M. Drobish ◽  
Timothy P. Gibbons ◽  
Victoria S. Newbury ◽  
...  

The present study attempted to quantify differences in peak physiological responses to pole-striding (PS), double poling on roller skis (DP), and diagonal striding on roller skis (DS) during maximal exercise. Six expert cross-country ski racers (3 M, 3 F) with a mean age of 20.2 ± 1.3 yrs served as subjects. Testing was conducted on a motorized ski treadmill with a tracked belt surface. Expired air was analyzed continuously via an automated open-circuit system and averaged each 20 s. Heart rate was monitored via telemetry and arterialized blood was collected within 1 min of test termination and analyzed immediately for lactate. Peak values for heart rate and blood lactate did not differ among techniques. Peak oxygen uptake was higher for PS and DS versus DP whereas no difference was found between PS and DS. The VO2 peak for DP was 77 and 81% of VO2 peak for PS and DS, respectively. It was concluded that despite similar peak heart rate and blood lactate values, DP elicits a lower VO2 peak than DS or PS and that PS responses appear to closely reflect those of DS. Key words: exercise testing, maximum oxygen uptake, roller skiing, specificity of exercise, x-c skiing


2020 ◽  
Author(s):  
Matt Morgan ◽  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery. Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices. Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 male) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R=0.57 (CI 0.29-0.76), R=0.59 (CI 0.31-0.77) and R=0.62 (CI 0.35-0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01-0.64), R = 0.39 (CI 0.04-0.66) and R = 0.42 (CI 0.07-0.68) respectively) and peak work (R = 0.56 (CI 0.27-0.75), R = 0.48 (CI 0.17-0.70) and R = 0.50 (CI 0.2-0.72) respectively). Receiver Operator Curve (ROC) analysis for direct and self-reported measures of 7 day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work. Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment. Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24/1/2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.


2019 ◽  
Vol 14 (9) ◽  
pp. 1190-1199 ◽  
Author(s):  
Øyvind Skattebo ◽  
Thomas Losnegard ◽  
Hans Kristian Stadheim

Purpose: Long-distance cross-country skiers specialize to compete in races >50 km predominantly using double poling (DP). This emphasizes the need for highly developed upper-body endurance capacities and an efficient DP technique. The aim of this study was to investigate potential effects of specialization by comparing physiological capacities and kinematics in DP between long-distance skiers and skiers competing using both techniques (skating/classic) in several competition formats (“all-round skiers”). Methods: Seven male long-distance (32 [6] y, 183 [6] cm, 76 [5] kg) and 6 all-round (25 [3] y, 181 [5] cm, 75 [6] kg) skiers at high international levels conducted submaximal workloads and an incremental test to exhaustion for determination of peak oxygen uptake (VO2peak) and time to exhaustion (TTE) in DP and running. Results: In DP and running maximal tests, TTE showed no difference between groups. However, long-distance skiers had 5–6% lower VO2peak in running (81 [5] vs 85 [3] mL·kg−1·min−1; P = .07) and DP (73 [3] vs 78 [3] mL·kg−1·min−1; P < .01) than all-round skiers. In DP, long-distance skiers displayed lower submaximal O2 cost than all-round skiers (3.8 ± 3.6%; P < .05) without any major differences in cycle times or cyclic patterns of joint angles and center of mass. Lactate concentration over a wide range of speeds (45–85% of VO2peak) did not differ between groups, even though each workload corresponded to a slightly higher percentage of VO2peak for long-distance skiers (effect size: 0.30–0.68). Conclusions: The long-distance skiers displayed lower VO2peak but compensated with lower O2 cost to perform equally with the all-round skiers on a short TTE test in DP. Furthermore, similar submaximal lactate concentration and reduced O2 cost could be beneficial in sustaining high skiing speeds in long-duration competitions.


Sign in / Sign up

Export Citation Format

Share Document