Temporal Thermometry Fails to Track Body Core Temperature during Heat Stress

2007 ◽  
Vol 39 (7) ◽  
pp. 1029-1035 ◽  
Author(s):  
DAVID A. LOW ◽  
ALBERT VU ◽  
MARILEE BROWN ◽  
SCOTT L. DAVIS ◽  
DAVID M. KELLER ◽  
...  
Physiology ◽  
1986 ◽  
Vol 1 (2) ◽  
pp. 41-44 ◽  
Author(s):  
M Cabanac

The mammalian brain has poor tolerance to increased temperature. However, when body core temperature rises during exercise or heat stress, the temperature of the brain can remain at a lower level, somewhat independent of the rest of the body. In several mammals the cooling of the brain is related to anatomically well-defined countercurrent heat exchangers. Humans lack these distinct anatomic structures, but significant cooling of the brain can nevertheless occur. Such selective cooling of the brain may have important medical implicantions.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1084
Author(s):  
Jared Ruff ◽  
Guillermo Tellez ◽  
Aaron J. Forga ◽  
Roberto Señas-Cuesta ◽  
Christine N. Vuong ◽  
...  

The objective of the present research was to assess the dietary supplementation of three formulations of essential oils (EO) in chickens under heat stress (HS). Day-of-hatch Cobb 500 chicks (n = 500) were randomly distributed into four groups: 1. HS control + control diets; 2. HS + control diets supplemented with 37 ppm EO of Lippia origanoides (LO); 3. HS + control diets supplemented with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm red beetroot; 4. HS + 45 ppm LO + 45 ppm RO + 300 ppm natural betaine. Chickens that received the EO showed significant (p < 0.05) improvement on BW, BWG, FI, and FCR compared to control HS chickens. Average body core temperature in group 3 and group 4 was significantly (p < 0.05) reduced compared with the HS control group and group 2. Experimental groups showed a significant reduction in FITC-d at 42 days, a significant increase in SOD at both days but a significant reduction of IFN-γ and IgA compared with HS control (p < 0.05). Bone mineralization was significantly improved by EO treatments (p < 0.05). Together these data suggest that supplemental dietary EO may reduce the harmful effects of HS.


2017 ◽  
Vol 14 (9) ◽  
pp. 703-711 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Robert D. Meade ◽  
Andrew W. D'Souza ◽  
Andreas D. Flouris ◽  
Stephen G. Hardcastle ◽  
...  

2008 ◽  
Vol 294 (2) ◽  
pp. F309-F315 ◽  
Author(s):  
Joo Lee Cham ◽  
Emilio Badoer

Redistribution of blood from the viscera to the peripheral vasculature is the major cardiovascular response designed to restore thermoregulatory homeostasis after an elevation in body core temperature. In this study, we investigated the role of the hypothalamic paraventricular nucleus (PVN) in the reflex decrease in renal blood flow that is induced by hyperthermia, as this brain region is known to play a key role in renal function and may contribute to the central pathways underlying thermoregulatory responses. In anesthetized rats, blood pressure, heart rate, renal blood flow, and tail skin temperature were recorded in response to elevating body core temperature. In the control group, saline was microinjected bilaterally into the PVN; in the second group, muscimol (1 nmol in 100 nl per side) was microinjected to inhibit neuronal activity in the PVN; and in a third group, muscimol was microinjected outside the PVN. Compared with control, microinjection of muscimol into the PVN did not significantly affect the blood pressure or heart rate responses. However, the normal reflex reduction in renal blood flow observed in response to hyperthermia in the control group (∼70% from a resting level of 11.5 ml/min) was abolished by the microinjection of muscimol into the PVN (maximum reduction of 8% from a resting of 9.1 ml/min). This effect was specific to the PVN since microinjection of muscimol outside the PVN did not prevent the normal renal blood flow response. The data suggest that the PVN plays an essential role in the reflex decrease in renal blood flow elicited by hyperthermia.


2002 ◽  
Vol 80 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Frédéric Canini ◽  
Nadine Simler ◽  
Lionel Bourdon

The effects of MK801 (dizocilpine), a glutamate NMDA receptor antagonist, on thermoregulation in the heat were studied in awake rats exposed to 40°C ambient temperature until their body core temperature reached 43°C. Under these conditions, MK801-treated rats exhibited enhanced locomotor activity and a steady rise in body core temperature, which reduced the heat exposure duration required to reach 43°C. Since MK801-treated rats also showed increased striatal dopaminergic metabolism at thermoneutrality, the role of dopamine in the MK801-induced impairment of thermoregulation in the heat was determined using co-treatment with SCH23390, a dopamine D1 receptor antagonist. SCH23390 normalized the locomotor activity in the heat without any effect on the heat exposure duration. These results suggest that the MK801-induced impairment of thermoregulation in the heat is related to neither a dopamine metabolism alteration nor a locomotor activity enhancement.Key words: heatstroke, NMDA receptor, thermoregulation, dopamine, locomotion.


2013 ◽  
Vol 84 (11) ◽  
pp. 1153-1158 ◽  
Author(s):  
Jayme D. Limbaugh ◽  
Gregory S. Wimer ◽  
Lynn H. Long ◽  
William H. Baird

2015 ◽  
Vol 4 (S1) ◽  
Author(s):  
Yoram Epstein ◽  
Savyon Mazgaoker ◽  
Doron Gruber ◽  
Daniel S Moran ◽  
Ran Yanovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document