Kinematic Determinants and Physiological Response of Cross-Country Skiing at Maximal Speed

2009 ◽  
Vol 41 (7) ◽  
pp. 1476-1487 ◽  
Author(s):  
THOMAS L. STÖGGL ◽  
ERICH MÜLLER
2019 ◽  
Vol 14 (6) ◽  
pp. 788-795 ◽  
Author(s):  
Pål Haugnes ◽  
Per-Øyvind Torvik ◽  
Gertjan Ettema ◽  
Jan Kocbach ◽  
Øyvind Sandbakk

Purpose: To investigate the contribution from maximal speed (Vmax) and %Vmax to the finish sprint speed obtained in a cross-country sprint in the classical and skating style, as well as the coinciding changes in kinematic patterns and the effect of pacing strategy on the %Vmax. Methods: Twelve elite male cross-country skiers performed two 80-m Vmax tests on flat terrain using the classical double-poling and skating G3 techniques, followed by 4 simulated 1.4-km sprint time trials, performed with conservative (controlled start) and positive (hard start) pacing strategies in both styles with a randomized order. In all cases, these time trials were finalized by sprinting maximally over the last 80 m (the Vmax section). Results: Approximately 85% of Vmax was obtained in the finish sprint of the 1.4-km competitions, with Vmax and %Vmax contributing similarly (R2 = 51–78%) to explain the overall variance in finish sprint speed in all 4 cases (P < .05). The changes in kinematic pattern from the Vmax to the finish sprint included 11–22% reduced cycle rate in both styles (P < .01), without any changes in cycle length. A 3.6% faster finish sprint speed, explained by higher cycle rate, was found by conservative pacing in classic style (P < .001), whereas no difference was seen in skating. Conclusions: Vmax ability and %Vmax contributed similarly to explain the finish sprint speed, both in the classic and skating styles, and independent of pacing strategy. Therefore, sprint cross-country skiers should concurrently develop both these capacities and employ technical strategies where a high cycle rate can be sustained when fatigue occurs.


2019 ◽  
Vol 51 (4) ◽  
pp. 760-772 ◽  
Author(s):  
THOMAS STÖGGL ◽  
OLLI OHTONEN ◽  
MASAKI TAKEDA ◽  
NAOTO MIYAMOTO ◽  
CORY SNYDER ◽  
...  

2004 ◽  
Vol 38 (4) ◽  
pp. 506-506
Author(s):  
P Blackman

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2535
Author(s):  
Thomas Stöggl ◽  
Dennis-Peter Born

The aims of the study were to assess the robustness and non-reactiveness of wearable near-infrared spectroscopy (NIRS) technology to monitor exercise intensity during a real race scenario, and to compare oxygenation between muscle groups important for cross-country skiing (XCS). In a single-case study, one former elite XCS (age: 39 years, peak oxygen uptake: 65.6 mL/kg/min) was equipped with four NIRS devices, a high-precision global navigation satellite system (GNSS), and a heart rate (HR) monitor during the Vasaloppet long-distance XCS race. All data were normalized to peak values measured during incremental laboratory roller skiing tests two weeks before the race. HR reflected changes in terrain and intensity, but showed a constant decrease of 0.098 beats per minute from start to finish. Triceps brachii (TRI) muscle oxygen saturation (SmO2) showed an interchangeable pattern with HR and seems to be less affected by drift across the competition (0.027% drop per minute). Additionally, TRI and vastus lateralis (VL) SmO2 revealed specific loading and unloading pattern of XCS in uphill and downhill sections, while rectus abdominus (RA) SmO2 (0.111% drop per minute) reflected fatigue patterns occurring during the race. In conclusion, the present preliminary study shows that NIRS provides a robust and non-reactive method to monitor exercise intensity and fatigue mechanisms when applied in an outdoor real race scenario. As local exercise intensity differed between muscle groups and central exercise intensity (i.e., HR) during whole-body endurance exercise such as XCS, NIRS data measured at various major muscle groups may be used for a more detailed analysis of kinetics of muscle activation and compare involvement of upper body and leg muscles. As TRI SmO2 seemed to be unaffected by central fatigue mechanisms, it may provide an alternative method to HR and GNSS data to monitor exercise intensity.


Sensors ◽  
2017 ◽  
Vol 18 (2) ◽  
pp. 75 ◽  
Author(s):  
Ole Rindal ◽  
Trine Seeberg ◽  
Johannes Tjønnås ◽  
Pål Haugnes ◽  
Øyvind Sandbakk

1981 ◽  
Vol 9 (2) ◽  
pp. 64-70 ◽  
Author(s):  
N. B. Oldridge ◽  
J. D. MacDougall

2017 ◽  
Vol 33 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Franziska Onasch ◽  
Anthony Killick ◽  
Walter Herzog

The aim of this study was to determine the effects of pole length on energy cost and kinematics in cross country double poling. Seven sub-elite male athletes were tested using pole sets of different lengths (ranging between 77% and 98% of participants’ body height). Tests were conducted on a treadmill, set to a 2% incline and an approximate racing speed. Poling forces, contact times, and oxygen uptake were measured throughout the testing. Pole length was positively correlated with ground contact time (r = .57, p < .001) and negatively correlated with poling frequency (r = −.48, p = .003). Pole length was also positively correlated with pole recovery time and propulsive impulse produced per poling cycle (r = .36, p = .031; r = .35, p = .042, respectively). Oxygen uptake and pole length were negatively correlated (r = −.51, p = .004). This acute study shows that increasing pole length for double poling in sub-elite cross country skiers under the given conditions seems to change the poling mechanics in distinct ways, resulting in a more efficient poling action by decreasing an athlete’s metabolic cost.


1983 ◽  
Vol 16 (4) ◽  
pp. 290
Author(s):  
J. Pierce ◽  
M. Pope ◽  
R. Johnson ◽  
D. Punia

2021 ◽  
Vol 15 (10) ◽  
pp. 3245-3249
Author(s):  
Gökhan Atasever ◽  
Fatih Kiyici ◽  
Deniz Bedir ◽  
Fatih Ağduman

Aim: Biathlon is a sport that combines cross-country skiing and rifle shooting. The athlete is fast in the cross-country skiing section, in the gun shooting section, the heart rate should be low. This study aims to determine the hitting rate of the shots made with different training loads on low altitude in elite biathletes in terms of maximum speed and physiological variables. Methods: To evaluate shooting performances first with the resting pulse and then after 2.5 km skiing respectively with 50%, 70% and 100% pulse rate which is separately calculated for each athlete according to karvonen formula. Results: Our findings show that while there was negative relation between maximum speed and body fat there was a positive relation with lean body mass. It has been determined that low body fat percentage and high lean body mass are effective at the athletes’ maximum speed and the pulse level with the highest target shooting accuracy rate was at rest and 70% in the second level. Conclusion: Since the pulse of the athlete who comes to the shooting area cannot be reduced to a resting level in a short time, focusing the 70% pulse zone may be beneficial in terms of shooting accuracy and acceleration after the shot. The lowest results in target shooting accuracy were seen at 50% and 100% loads. Keywords: Athletes, performance, heart, rate, lean body mass.


Sign in / Sign up

Export Citation Format

Share Document