Fast-Start Strategy Improves V˙O2 Kinetics and High-Intensity Exercise Performance

2011 ◽  
Vol 43 (3) ◽  
pp. 457-467 ◽  
Author(s):  
STEPHEN J. BAILEY ◽  
ANNI VANHATALO ◽  
FRED J. DIMENNA ◽  
DARYL P. WILKERSON ◽  
ANDREW M. JONES
2018 ◽  
Vol 315 (5) ◽  
pp. E1034-E1045 ◽  
Author(s):  
Kristoffer Svensson ◽  
Jessica R. Dent ◽  
Shahriar Tahvilian ◽  
Vitor F. Martins ◽  
Abha Sathe ◽  
...  

The pyruvate dehydrogenase complex (PDC) converts pyruvate to acetyl-CoA and is an important control point for carbohydrate (CHO) oxidation. However, the importance of the PDC and CHO oxidation to muscle metabolism and exercise performance, particularly during prolonged or high-intensity exercise, has not been fully defined especially in mature skeletal muscle. To this end, we determined whether skeletal muscle-specific loss of pyruvate dehydrogenase alpha 1 ( Pdha1), which is a critical subunit of the PDC, impacts resting energy metabolism, exercise performance, or metabolic adaptation to high-fat diet (HFD) feeding. For this, we generated a tamoxifen (TMX)-inducible Pdha1 knockout (PDHmKO) mouse, in which PDC activity is temporally and specifically ablated in adult skeletal muscle. We assessed energy expenditure, ex vivo muscle contractile performance, and endurance exercise capacity in PDHmKO mice and wild-type (WT) littermates. Additionally, we studied glucose homeostasis and insulin sensitivity in muscle after 12 wk of HFD feeding. TMX administration largely ablated PDHα in skeletal muscle of adult PDHmKO mice but did not impact energy expenditure, muscle contractile function, or low-intensity exercise performance. Additionally, there were no differences in muscle insulin sensitivity or body composition in PDHmKO mice fed a control or HFD, as compared with WT mice. However, exercise capacity during high-intensity exercise was severely impaired in PDHmKO mice, in parallel with a large increase in plasma lactate concentration. In conclusion, although skeletal muscle PDC is not a major contributor to resting energy expenditure or long-duration, low-intensity exercise performance, it is necessary for optimal performance during high-intensity exercise.


Author(s):  
Lukas Beis ◽  
Yaser Mohammad ◽  
Chris Easton ◽  
Yannis P. Pitsiladis

Oral supplementation with glycine-arginine-α-ketoisocaproic acid (GAKIC) has previously been shown to improve exhaustive high-intensity exercise performance. There are no controlled studies involving GAKIC supplementation in well-trained subjects. The aim of the current study was to examine the effects of GAKIC supplementation on fatigue during high-intensity, repeated cycle sprints in trained cyclists. After at least 2 familiarization trials, 10 well-trained male cyclists completed 2 supramaximal sprint tests each involving 10 sprints of 10 s separated by 50-s rest intervals on an electrically braked cycle ergometer. Subjects ingested 11.2 g of GAKIC or placebo (Pl) during a period of 45 min before the 2 experimental trials, administered in a randomized and double-blind fashion. Peak power declined from the 1st sprint (M ± SD; Pl 1,332 ± 307 W, GAKIC 1,367 ± 342 W) to the 10th sprint (Pl 1,091 ± 229 W, GAKIC 1,061 ± 272 W) and did not differ between conditions (p = .88). Mean power declined from the 1st sprint (Pl 892 ± 151 W, GAKIC 892 ± 153 W) to the 10th sprint (Pl 766 ± 120 W, GAKIC 752 ± 138 W) and did not differ between conditions (p = .96). The fatigue index remained at ~38% throughout the series of sprints and did not differ between conditions (p = .99). Heart rate and ratings of perceived exertion increased from the 1st sprint to the 10th sprint and did not differ between conditions (p = .11 and p = .83, respectively). In contrast to previous studies in untrained individuals, these results suggest that GAKIC has no ergogenic effect on repeated bouts of high-intensity exercise in trained individuals.


2020 ◽  
Vol 52 (7S) ◽  
pp. 1024-1025
Author(s):  
Yudai Shibayama ◽  
Shohei Dobashi ◽  
Tamotsu Fukuoka ◽  
Takaaki Arisawa ◽  
Katsuhiro Koyama

2007 ◽  
Vol 39 (Supplement) ◽  
pp. S252-S253
Author(s):  
Mon Jef Peeters ◽  
Edward C. Rhodes ◽  
Robert H. Langill ◽  
A William Sheel ◽  
Jack E. Taunton

Author(s):  
Charles S. Urwin ◽  
Rodney J. Snow ◽  
Dominique Condo ◽  
Rhiannon Snipe ◽  
Glenn D. Wadley ◽  
...  

This review aimed to identify factors associated with (a) physiological responses, (b) gastrointestinal (GI) symptoms, and (c) exercise performance following sodium citrate supplementation. A literature search identified 33 articles. Observations of physiological responses and GI symptoms were categorized by dose (< 500, 500, and > 500 mg/kg body mass [BM]) and by timing of postingestion measurements (in minutes). Exercise performance following sodium citrate supplementation was compared with placebo using statistical significance, percentage change, and effect size. Performance observations were categorized by exercise duration (very short < 60 s, short ≥ 60 and ≤ 420 s, and longer > 420 s) and intensity (very high > 100% VO2max and high 90–100% VO2max). Ingestion of 500 mg/kg BM sodium citrate induced blood alkalosis more frequently than < 500 mg/kg BM, and with similar frequency to >500 mg/kg BM. The GI symptoms were minimized when a 500 mg/kg BM dose was ingested in capsules rather than in solution. Significant improvements in performance following sodium citrate supplementation were reported in all observations of short-duration and very high–intensity exercise with a 500 mg/kg BM dose. However, the efficacy of supplementation for short-duration, high-intensity exercise is less clear, given that only 25% of observations reported significant improvements in performance following sodium citrate supplementation. Based on the current literature, the authors recommend ingestion of 500 mg/kg BM sodium citrate in capsules to induce alkalosis and minimize GI symptoms. Supplementation was of most benefit to performance of short-duration exercise of very high intensity; further investigation is required to determine the importance of ingestion duration and timing.


Sign in / Sign up

Export Citation Format

Share Document