Numerical Tests for Usefulness of Power-Law Formalism Method in Parameter Optimization Problem of Immobilized Enzyme Reaction.

2000 ◽  
Vol 33 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Takahiro Hasegawa ◽  
Fumihide Shiraishi ◽  
Hiroyuki Nagasue
Author(s):  
Gabriele Eichfelder ◽  
Kathrin Klamroth ◽  
Julia Niebling

AbstractA major difficulty in optimization with nonconvex constraints is to find feasible solutions. As simple examples show, the $$\alpha $$ α BB-algorithm for single-objective optimization may fail to compute feasible solutions even though this algorithm is a popular method in global optimization. In this work, we introduce a filtering approach motivated by a multiobjective reformulation of the constrained optimization problem. Moreover, the multiobjective reformulation enables to identify the trade-off between constraint satisfaction and objective value which is also reflected in the quality guarantee. Numerical tests validate that we indeed can find feasible and often optimal solutions where the classical single-objective $$\alpha $$ α BB method fails, i.e., it terminates without ever finding a feasible solution.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Danni Chen ◽  
JianDong Zhao ◽  
Peng Huang ◽  
Xiongna Deng ◽  
Tingting Lu

Purpose Sparrow search algorithm (SSA) is a novel global optimization method, but it is easy to fall into local optimization, which leads to its poor search accuracy and stability. The purpose of this study is to propose an improved SSA algorithm, called levy flight and opposition-based learning (LOSSA), based on LOSSA strategy. The LOSSA shows better search accuracy, faster convergence speed and stronger stability. Design/methodology/approach To further enhance the optimization performance of the algorithm, The Levy flight operation is introduced into the producers search process of the original SSA to enhance the ability of the algorithm to jump out of the local optimum. The opposition-based learning strategy generates better solutions for SSA, which is beneficial to accelerate the convergence speed of the algorithm. On the one hand, the performance of the LOSSA is evaluated by a set of numerical experiments based on classical benchmark functions. On the other hand, the hyper-parameter optimization problem of the Support Vector Machine (SVM) is also used to test the ability of LOSSA to solve practical problems. Findings First of all, the effectiveness of the two improved methods is verified by Wilcoxon signed rank test. Second, the statistical results of the numerical experiment show the significant improvement of the LOSSA compared with the original algorithm and other natural heuristic algorithms. Finally, the feasibility and effectiveness of the LOSSA in solving the hyper-parameter optimization problem of machine learning algorithms are demonstrated. Originality/value An improved SSA based on LOSSA is proposed in this paper. The experimental results show that the overall performance of the LOSSA is satisfactory. Compared with the SSA and other natural heuristic algorithms, the LOSSA shows better search accuracy, faster convergence speed and stronger stability. Moreover, the LOSSA also showed great optimization performance in the hyper-parameter optimization of the SVM model.


2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Jiuyuan Huo ◽  
Liqun Liu

Parameter optimization of a hydrological model is intrinsically a high dimensional, nonlinear, multivariable, combinatorial optimization problem which involves a set of different objectives. Currently, the assessment of optimization results for the hydrological model is usually made through calculations and comparisons of objective function values of simulated and observed variables. Thus, the proper selection of objective functions’ combination for model parameter optimization has an important impact on the hydrological forecasting. There exist various objective functions, and how to analyze and evaluate the objective function combinations for selecting the optimal parameters has not been studied in depth. Therefore, to select the proper objective function combination which can balance the trade-off among various design objectives and achieve the overall best benefit, a simple and convenient framework for the comparison of the influence of different objective function combinations on the optimization results is urgently needed. In this paper, various objective functions related to parameters optimization of hydrological models were collected from the literature and constructed to nine combinations. Then, a selection and evaluation framework of objective functions is proposed for hydrological model parameter optimization, in which a multiobjective artificial bee colony algorithm named RMOABC is employed to optimize the hydrological model and obtain the Pareto optimal solutions. The parameter optimization problem of the Xinanjiang hydrological model was taken as the application case for long-term runoff prediction in the Heihe River basin. Finally, the technique for order preference by similarity to ideal solution (TOPSIS) based on the entropy theory is adapted to sort the Pareto optimal solutions to compare these combinations of objective functions and obtain the comprehensive optimal objective functions’ combination. The experiments results demonstrate that the combination 2 of objective functions can provide more comprehensive and reliable dominant options (i.e., parameter sets) for practical hydrological forecasting in the study area. The entropy-based method has been proved that it is effective to analyze and evaluate the performance of different combinations of objective functions and can provide more comprehensive and impersonal decision support for hydrological forecasting.


2016 ◽  
Author(s):  
Vahid Mardanlou ◽  
Elisa Franco

AbstractIn a synthetic biological network it may often be desirable to maximize or minimize parameters such as reaction rates, fluxes and total concentrations of reagents, while preserving a given dynamic behavior. We consider the problem of parameter optimization in biomolecular bistable circuits. We show that, under some assumptions often satisfied by bistable biological networks, it is possible to derive algebraic conditions on the parameters that determine when bistability occurs. These (global) algebraic conditions can be included as nonlinear constraints in a parameter optimization problem. We derive bistability conditions using Sturm's theorem for Gardner and Collins toggle switch. Then we optimize its nominal parameters to improve switching speed and robustness to a subset of uncertain parameters.


2017 ◽  
Vol 24 (13) ◽  
pp. 2873-2893 ◽  
Author(s):  
Austin A Phoenix ◽  
Jeff Borggaard ◽  
Pablo A Tarazaga

As future space mission structures are required to achieve more with scarcer resources, new structural configurations and modeling capabilities will be needed to meet the next generation space structural challenges. A paradigm shift is required away from the current structures that are static, heavy, and stiff, to innovative lightweight structures that meet requirements by intelligently adapting to the environment. As the complexity of these intelligent structures increases, the computational cost of the modeling and optimization efforts become increasingly demanding. Novel methods that identify and reduce the number of parameters to only those most critical considerably reduce these complex problems, allowing highly iterative evaluations and in-depth optimization efforts to be computationally feasible. This parameter ranking methodology will be demonstrated on the optimization of the thermal morphing anisogrid boom. The proposed novel morphing structure provides high precision morphing through the use of thermal strain as the sole actuation mechanism. The morphing concept uses the helical members in the anisogrid structure to provide complex constrained actuations that can achieve the six degree of freedom morphing capability. This structure provides a unique potential to develop an integrated structural morphing system, where the adaptive morphing capability is integrated directly into the primary structure. To identify parameters of interest, the Q-DEIM model reduction algorithm is implemented to rank the model parameters based on their impact on the morphing performance. This parameter ranking method provides insight into the system and enables the optimal allocation of computational and engineering resources to the most critical areas of the system for optimization. The methodology, in conjunction with a singular value decomposition (SVD), provides a ranking and identifies parameters of relative importance. The SVD is used to truncate the nine parameters problem at two locations, generating a five parameter optimization problem and a three parameter optimization problem. To evaluate the ranking, a parameter sweep in conjunction with a simple minimum cost function search algorithm will compare all 120 five parameter ranking orders to the Q-DEIM ranking. This reduced parameter set significantly reduces the parameter complexity and the computational cost of the model optimization. This paper will present the methodology to define the resulting performance of the optimal thermal morphing anisogrid structure, minimum morphing control, and the systems frequency response capability as a function of available power.


Sign in / Sign up

Export Citation Format

Share Document