scholarly journals Effects of Pitot Tube Inserted and Those of Dust Loading on Pressure Drop and Velocity Distribution in Cyclone

1956 ◽  
Vol 20 (4) ◽  
pp. 172-183
Author(s):  
Takeo Yano ◽  
Yoshiyuki Kitaura ◽  
Yukio Nakako ◽  
Tadaaki Yamaguchi ◽  
Shunpei Uchiyama
2011 ◽  
Vol 66 (18) ◽  
pp. 4036-4046 ◽  
Author(s):  
S. Fotovati ◽  
S.A. Hosseini ◽  
H. Vahedi Tafreshi ◽  
B. Pourdeyhimi

1969 ◽  
Vol 33 (12) ◽  
pp. 1255-1260,a1 ◽  
Author(s):  
Norio Kimura ◽  
Koichi Iinoya
Keyword(s):  

2021 ◽  
Vol 2 (2) ◽  
pp. 31-36
Author(s):  
Lhiung Phung Hwa

Open and closed channel flow flows are distinct, the flow in the channels will constantly change. The flow will also be altered if the water level or flow velocity changes. It was found that employing the Pitot Tube Portable yielded findings identical to those calculated by other methods. A water transfer system is made up of natural or artificial structures via which water is moved from one site to another. The carrier building may be open or closed, depending on whether you want to utilize it as a shipping or receiving location. An open channel with a relatively narrow opening at the top is known as an open conduit. The speed data collection technique is carried out vertically, with a review point as illustrated above. The velocity of the flow was measured using a Pitot Tube Portable Automatic tool. The results are entered into the Froude number (fr) after each review point to determine the type of velocity flow at each Review point. The normal flow velocity distribution pattern emerges at the measurement sites of 450 cm, 500 cm, and 550 cm.


Author(s):  
Xidong Hu ◽  
Shaoxiang Qian ◽  
Kaori Yamauchi ◽  
Haruo Okochi

The present paper aims to predict the separation efficiency and pressure drop of a vertical geothermal cyclone type separator using CFD (Computational Fluid Dynamics) simulations, for optimizing the design of such separator. A benchmark study was firstly performed for a single phase flow in a Stairmand design cyclone using four different turbulence models, in order to verify the prediction accuracy of flow velocity distribution by comparison with experimental data in literature. The investigated turbulence models include (1) Renormalization Group (RNG) k-ε, (2) Realizable k-ε, (3) Reynolds stress turbulence model (RSM) and (4) Large eddy simulation (LES). Results show that RNG k-ε and Realizable k-ε models are not capable of reproducing the experimental data while the RSM and LES models reproduce the flow velocity distribution very well. Then, CFD simulations of two-phase flow in a steam-water cyclone separator were carried out for different stream inlet velocities applying the RSM model. This is based on the consideration that steady state analysis can be done for the RSM model, and however, transient analysis is needed for the LES model, and hence, more expensive and time-consuming for engineering applications. The CFD results for outlet steam quality and pressure drop were obtained under different stream inlet velocities. The separation efficiency and outlet steam quality decreases a little when the inlet velocity increases from 34.5m/s to 72m/s. However, the outlet steam quality predicted in the present CFD analysis is close to that of Lazalde-Crabtree.


Author(s):  
Daiwa Sato ◽  
T. Iwase ◽  
J. Xue ◽  
K. Tsuchihashi ◽  
H. Obara ◽  
...  

To meet the demand for energy-saving air conditioners, the pressure drop must be reduced and the air velocity distribution of the heat exchanger made uniform to improve the performance of both the fan and the heat exchange cycle. To investigate the effect of the fan on the pressure drop and the velocity distribution, we changed the fan diameter and fixed the shape of the heat exchanger. First, we investigated the fan by comparing the total pressure efficiency when the fan was mounted in an indoor unit and unmounted as a standalone fan. We found that the mounted fan performed worse than the standalone fan. The difference between these conditions was whether the heat exchanger was around the fan. Next, to determine the appropriate diameter, the performance of the mounted fan was evaluated by measuring its efficiency and the fan power. The diameter with the highest efficiency differed from the diameter with the lowest fan power. Because of this, the fan performance was strongly affected by the heat exchanger and the vortex. When the standard deviation of the air flow distribution in the heat exchanger was evaluated, the diameter with the lowest standard deviation was the same as the diameter with the lowest fan power. Since the standard deviation needs to be reduced to improve the performance of both the fan and the heat exchange cycle, the mounting conditions need to be considered to determine the fan shape. Thus, the flow field around the fan was visualized, and the velocity distributions for the investigated diameters were compared. We found the distance between the fan and the heat exchanger was an important factor determining the performance. A fan with the most appropriate diameter was prototyped to evaluate the fan performance. Results revealed it used 3% less power than a standard-diameter fan.


Author(s):  
Jinli Lu ◽  
Yingli Hao

A two dimensional numerical simulation is conducted to investigate the flow and heat transfer characteristics of single phase liquid laminar flow through rough microchannels. The wall roughness is simulated in a series of cases with rectangular, triangular and trapezoidal elements, respectively. Shape factor and peak position have been used to analyze the influence of roughness elements on centerline velocity distribution, pressure drop and Nusselt number. It is found that the shape factor has a significant effect on the centerline velocity distribution, pressure drop and Nusselt number. It is also found that, for a given shape factor, the effect of peak position on pressure drop is strongly than centerline velocity distribution and heat transfer. In addition, for all considered roughness element shapes, the rectangular element displays a poor heat transfer and large pressure drop.


Sign in / Sign up

Export Citation Format

Share Document