Applying Artificial Neural Networks: Part II. Using near Infrared Data to Classify Tobacco Types and Identify Native Grown Tobacco

1997 ◽  
Vol 5 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Maha Hana ◽  
W.F. McClure ◽  
T.B. Whitaker ◽  
M.W. White ◽  
D.R. Bahler

Classification of flue-cured and Burley tobacco types with artificial neural networks (ANNs) were studied. Burley tobacco was further classified as either grown in the USA or grown outside the USA. The input data were in the form of near infrared (NIR) spectra, each spectrum containing 19 points. The number of flue-cured and Burley samples were 654 and 959, respectively. The number of native and non-native tobacco samples were 266 and 267, respectively. The models selected for this research were a quadratic classifier, a back-propagation network and a linear network. The results of the calibration model and the true performance for classifying tobacco species were (100%, 100%), (99.38%, 99.39%) and (95.19%, 99.26%) for the quadratic classifier, back-propagation network and linear network, respectively. The identification of native tobacco and its true performance were (100%, 100%) using a quadratic classifier, (89.12%, 88.46%) using a back-propagation network and (80.68%, 79.62%) using a linear network.

2019 ◽  
Vol 14 (2) ◽  
pp. 285-315 ◽  
Author(s):  
Emmanuel Bannor B. ◽  
Alex O. Acheampong

Purpose This paper aims to use artificial neural networks to develop models for forecasting energy demand for Australia, China, France, India and the USA. Design/methodology/approach The study used quarterly data that span over the period of 1980Q1-2015Q4 to develop and validate the models. Eight input parameters were used for modeling the demand for energy. Hyperparameter optimization was performed to determine the ideal parameters for configuring each country’s model. To ensure stable forecasts, a repeated evaluation approach was used. After several iterations, the optimal models for each country were selected based on predefined criteria. A multi-layer perceptron with a back-propagation algorithm was used for building each model. Findings The results suggest that the validated models have developed high generalizing capabilities with insignificant forecasting deviations. The model for Australia, China, France, India and the USA attained high coefficients of determination of 0.981, 0.9837, 0.9425, 0.9137 and 0.9756, respectively. The results from the partial rank correlation coefficient further reveal that economic growth has the highest sensitivity weight on energy demand in Australia, France and the USA while industrialization has the highest sensitivity weight on energy demand in China. Trade openness has the highest sensitivity weight on energy demand in India. Originality/value This study incorporates other variables such as financial development, foreign direct investment, trade openness, industrialization and urbanization, which are found to have an important effect on energy demand in the model to prevent underestimation of the actual energy demand. Sensitivity analysis is conducted to determine the most influential variables. The study further deploys the models for hands-on predictions of energy demand.


Author(s):  
Mohammed H Adnan ◽  
Mustafa Muneer Isma’eel

The research aims to estimate stock returns using artificial neural networks and to test the performance of the Error Back Propagation network, for its effectiveness and accuracy in predicting the returns of stocks and their potential in the field of financial markets and to rationalize investor decisions. A sample of companies listed on the Iraq Stock Exchange was selected with (38) stock for a time series spanning (120) months for the years (2010_2019). The research found that there is a weakness in the network of Error Back Propagation training and the identification of data patterns of stock returns as individual inputs feeding the network due to the high fluctuation in the rates of returns leads to variation in proportions and in different directions, negatively and positively.


1995 ◽  
Vol 3 (3) ◽  
pp. 133-142 ◽  
Author(s):  
M. Hana ◽  
W.F. McClure ◽  
T.B. Whitaker ◽  
M. White ◽  
D.R. Bahler

Two artificial neural network models were used to estimate the nicotine in tobacco: (i) a back-propagation network and (ii) a linear network. The back-propagation network consisted of an input layer, an output layer and one hidden layer. The linear network consisted of an input layer and an output layer. Both networks used the generalised delta rule for learning. Performances of both networks were compared to the multiple linear regression method MLR of calibration. The nicotine content in tobacco samples was estimated for two different data sets. Data set A contained 110 near infrared (NIR) spectra each consisting of reflected energy at eight wavelengths. Data set B consisted of 200 NIR spectra with each spectrum having 840 spectral data points. The Fast Fourier transformation was applied to data set B in order to compress each spectrum into 13 Fourier coefficients. For data set A, the linear regression model gave better results followed by the back-propagation network which was followed by the linear network. The true performance of the linear regression model was better than the back-propagation and the linear networks by 14.0% and 18.1%, respectively. For data set B, the back-propagation network gave the best result followed by MLR and the linear network. Both the linear network and MLR models gave almost the same results. The true performance of the back-propagation network model was better than the MLR and linear network by 35.14%.


2013 ◽  
Vol 773-774 ◽  
pp. 268-274
Author(s):  
Amir Ghiami ◽  
Ramin Khamedi

This paper presents an investigation of the capabilities of artificial neural networks (ANN) in predicting some mechanical properties of Ferrite-Martensite dual-phase steels applicable for different industries like auto-making. Using ANNs instead of different destructive and non-destructive tests to determine the material properties, reduces costs and reduces the need for special testing facilities. Networks were trained with use of a back propagation (BP) error algorithm. In order to provide data for training the ANNs, mechanical properties, inter-critical annealing temperature and information about the microstructures of many specimens were examined. After the ANNs were trained, the four parameters of yield stress, ultimate tensile stress, total elongation and the work hardening exponent were simulated. Finally a comparison of the predicted and experimental values indicates that the results obtained from the given input data reveal a good ability of the well-trained ANN to predict the described mechanical properties.


2021 ◽  
Author(s):  
Mateus Alexandre da Silva ◽  
Marina Neves Merlo ◽  
Michael Silveira Thebaldi ◽  
Danton Diego Ferreira ◽  
Felipe Schwerz ◽  
...  

Abstract Predicting rainfall can prevent and mitigate damages caused by its deficit or excess, besides providing necessary tools for adequate planning for the use of water. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities in the metropolitan region of Belo Horizonte, using artificial neural networks (ANN) trained with different climate variables, and to indicate the suitability of such variables as inputs to these models. The models were developed through the MATLAB® software version R2011a, using the NNTOOL toolbox. The ANN’s were trained by the multilayer perceptron architecture and the Feedforward and Back propagation algorithm, using two combinations of input data were used, with 2 and 6 variables, and one combination of input data with 3 of the 6 variables most correlated to observed rainfall from 1970 to 1999, to predict the rainfall from 2000 to 2009. The most correlated variables to the rainfall of the following month are the sequential number corresponding to the month, total rainfall and average compensated temperature, and the best performance was obtained with these variables. Furthermore, it was concluded that the performance of the models was satisfactory; however, they presented limitations for predicting months with high rainfall.


2013 ◽  
Vol 14 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Issam Hanafi ◽  
Francisco Mata Cabrera ◽  
Abdellatif Khamlichi ◽  
Ignacio Garrido ◽  
José Tejero Manzanares

Sign in / Sign up

Export Citation Format

Share Document