scholarly journals Why Are Power Plants in India Less Efficient than Power Plants in the United States?

2014 ◽  
Vol 104 (5) ◽  
pp. 586-590 ◽  
Author(s):  
Hei Sing (Ron) Chan ◽  
Maureen L. Cropper ◽  
Kabir Malik

India's coal-fired generating capacity doubled between 1990 and 2010 and currently accounts for 70 percent of electricity produced. Despite this, thermal efficiency at state-owned coal-fired power plants in India is significantly lower than at plants in the United States. When matched on age and capacity, heat input per kWh was 8 percent higher at Indian plants between 1997 and 2009. This can only partly be explained by the lower heat content of Indian coal. Electricity sector restructuring in the United States improved thermal efficiency at investor-owned plants; however, electricity sector restructuring in India has yet to improve thermal efficiency at state-owned coal-fired power plants.

Author(s):  
Julianne M. Klara

Demand for electricity in the United States is expected to grow in the foreseeable future, requiring approximately 200 gigawatts of new generating capacity by 2010. Coal-based power plants built to supply this additional baseload capacity will be required to perform at high thermal efficiency and meet tough environmental regulations, all at competitive electric generating costs. The Department of Energy (DOE) / Pittsburgh Energy Technology Center (PETC) is managing a program called Combustion 2000 that is aimed at developing technologies that will assure the continued use of coal to meet the Nation’s power generating needs well into the 21st century. The High-Performance Power System (HIPPS) element of Combustion 2000 is based on an indirectly fired combined cycle. By using an indirectly fired gas turbine and a conventional steam cycle, HIPPS cleanly produces electricity from coal at a thermal efficiency that is about one-third higher than that of today’s conventional coal-based power plants. DOE/PETC’s HIPPS program, which is described in this paper, aims to demonstrate a commercial-scale prototype plant by 2004. An engineering analysis was performed to assess the feasibility of accelerating the demonstration of HIPPS by using only those materials available today. Results predict attractive efficiencies and competitive electric generating costs for a near-term design. The feasibility of HIPPS as a repowering option has also been examined. Preliminary projections reveal that added generating capacity and reduced emissions can be accomplished at an increased overall plant efficiency and with the potential to minimize capital expenditure.


2011 ◽  
Vol 101 (5) ◽  
pp. 1649-1675 ◽  
Author(s):  
Nicholas Z Muller ◽  
Robert Mendelsohn ◽  
William Nordhaus

This study presents a framework to include environmental externalities into a system of national accounts. The paper estimates the air pollution damages for each industry in the United States. An integrated-assessment model quantifies the marginal damages of air pollution emissions for the US which are multiplied times the quantity of emissions by industry to compute gross damages. Solid waste combustion, sewage treatment, stone quarrying, marinas, and oil and coal-fired power plants have air pollution damages larger than their value added. The largest industrial contributor to external costs is coal-fired electric generation, whose damages range from 0.8 to 5.6 times value added. (JEL E01, L94, Q53, Q56)


2021 ◽  
Author(s):  
Shobha Kondragunta

<p>Most countries around the world took actions to control COVID-19 spread that included social distancing, limiting air and ground travel, closing schools, suspending sports leagues, closing factories etc., leading to  economic shutdown. The reduced traffic and human movement compared to Business as Usual (BAU) scenario was tracked by Apple and Android cellphone use; the data showed substantial reductions in mobility in most metropolitan areas.  We analyzed reductions in on-road mobile NOx emissions from light and heavy duty vehicles in four major metropolitan and one rural areas in the United States that showed a reduction in NOx mobile emissions from 9% to 19% between February and March at the onset of lockdown in the middle of March; between March and April, the mobile NOx emissions dropped further by 8% to 31% when lockdown measures were the most stringiest.  These precipitous drops in NOx emissions correlated well with tropospheric NO<sub>2</sub> column amount observed by Sentinel 5 Precursor TROPospheric Ozone Monitoring Instrument (S5P TROPOMI).  Further, the changes in TROPOMI tropospheric NO<sub>2</sub> across the continental U.S. between 2020 and 2019 correlated well with changes in on-road NOx emissions (r=0.78) but correlated weakly with changes in emissions from the power plants (r=0.44). These findings confirm that power plants are no longer the major source of NO<sub>2</sub> in the United States. We also examined correlation between increase in unemployment rate between 2020 and 2019 to decrease in tropospheric NO<sub>2</sub> amount.  The negative correlation indicates that with increased unemployment rate combined with telework policies across the nation for non-essential workers, the NO<sub>2</sub> values decreased at the rate of 0.8 µmoles/m<sup>2</sup> decrease per unit percentage increase in unemployment rate.  There is a substantial amount of scatter in the data with some cities such as Atlanta, Dallas, and Houston showing no noticeable trend in tropospheric NO<sub>2</sub> changes during the time period when unemployment rate increased from 6% to 12%.   We examined the trends in on-road and power plant emissions for five different locations (four urban areas and one rural area) and show that the changes in NOx emissions during the lockdown are detectable in TROPOMI tropNO2 data, the economic indicators are consistent with emissions changes, and the trends reversing with the removal of lockdown measures in the major metro areas have not come back to pre-pandemic levels.  The COVID-19 pandemic experience has provided the scientific community an opportunity to identify emissions reductions scenarios that created a new normal for urban air quality and if the environmental protection agencies should look at this new normal as a guidance for instituting new policies. </p>


2020 ◽  
Author(s):  
Joshua D Rhodes ◽  
Aditya Choukulkar ◽  
Brianna Cote ◽  
Sarah A McKee ◽  
Christopher T M Clack

Abstract In the present paper, we assessed the potential for local wind, solar PV, and energy storage to provide baseload (constant, uninterrupted) power in every county of the contiguous United States. The amount of available capacity between 2020 and 2050 was determined via a least-cost optimization model that took into account changing costs of constituent technologies and local meteorological conditions. We found that, by 2050, the potential exists for about 6.8 TW of renewable baseload power at an average cost of approximately $50 / MWh, which is competitive with current wholesale market rates for electricity. The optimal technology configurations constructed always resulted in over two hours of emergency energy reserves, with the amount increasing as the price of energy storage falls. We also found that, given current price decline trajectories, the model has a tendency to select more solar capacity than wind over time. A second part of the study performed three million simulations followed by a regression analysis to generate an online map-based tool that allows users to change input costs assumptions and compute the cost of renewable baseload electricity in every contiguous US county.


Author(s):  
Steven A. Arndt

Over the past 20 years, the nuclear power industry in the United States (U.S.) has been slowly replacing old, obsolete, and difficult-to-maintain analog technology for its nuclear power plant protection, control, and instrumentation systems with digital systems. The advantages of digital technology, including more accurate and stable measurements and the ability to improve diagnostics capability and system reliability, have led to an ever increasing move to complete these upgrades. Because of the difficulties with establishing digital systems safety based on analysis or tests, the safety demonstration for these systems relies heavily on establishing the quality of the design and development of the hardware and software. In the United States, the U.S. Nuclear Regulatory Commission (NRC) has established detailed guidelines for establishing and documenting an appropriate safety demonstration for digital systems in NUREG-0800, “Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition,” Chapter 7, “Instrumentation and Controls,” Revision 5, issued March 2007 [1], and in a number of regulatory guides and interim staff guidance documents. However, despite the fact that the United States has a well-defined review process, a number of significant challenges associated with the design, licensing, and implementation of upgrades to digital systems for U.S. plants have emerged. Among these challenges have been problems with the quality of the systems and the supporting software verification and validation (V&V) processes, challenges with determining the optimum balance between the enhanced capabilities for the new systems and the desire to maintain system simplicity, challenges with cyber security, and challenges with developing the information needed to support the review of new systems for regulatory compliance.


Subject Cuba's energy troubles. Significance With a previously generous Venezuela facing economic crisis and the United States tightening sanctions, Cuba’s ability to augment its limited domestic oil and gas production is severely constrained. It lacks the export earnings to invest in new technologies and power generating capacity that could ease its fuel supply problems. Russia and China have spoken of offering assistance, but neither is inclined to provide handouts in the absence of commercial returns. Impacts Cuba has tried to trade more with Algeria and Angola but remains vulnerable to international oil price shifts. As a major producer of both sugar and biofuels, Brazil could provide a model for Cuba’s biofuel plans. Cubans are resilient and accustomed to hardship; the country’s looming economic troubles are unlikely to trigger serious unrest.


Sign in / Sign up

Export Citation Format

Share Document