Minimizing table time in patients with claustrophobia using focused ferumoxytol-enhanced MR angiography (f-FEMRA): a feasibility study

2021 ◽  
Vol 94 (1125) ◽  
pp. 20210430
Author(s):  
Puja Shahrouki ◽  
Kim-Lien Nguyen ◽  
John M. Moriarty ◽  
Adam N. Plotnik ◽  
Takegawa Yoshida ◽  
...  

Objectives: To assess the feasibility of a rapid, focused ferumoxytol-enhanced MR angiography (f-FEMRA) protocol in patients with claustrophobia. Methods: In this retrospective study, 13 patients with claustrophobia expressed reluctance to undergo conventional MR angiography, but agreed to a trial of up to 10 min in the scanner bore and underwent f-FEMRA. Thirteen matched control patients who underwent gadolinium-enhanced MR angiography (GEMRA) were identified for comparison of diagnostic image quality. For f-FEMRA, the time from localizer image acquisition to completion of the angiographic acquisition was measured. Two radiologists independently scored images on both f-FEMRA and GEMRA for arterial and venous image quality, motion artefact and diagnostic confidence using a 5-point scale, five being best. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the aorta and IVC were measured. The Wilcoxon rank-sum test, one-way ANOVA with Tukey correction and two-tailed t tests were utilized for statistical analyses. Results: All scans were diagnostic and assessed with high confidence (scores ≥ 4). Average scan time for f-FEMRA was 6.27 min (range 3.56 to 10.12 min), with no significant difference between f-FEMRA and GEMRA in diagnostic confidence (4.86 ± 0.24 vs 4.69 ± 0.25, p = 0.13), arterial image quality (4.62 ± 0.57 vs 4.65 ± 0.49, p = 0.78) and motion artefact score (4.58 ± 0.49 vs 4.58 ± 0.28, p > 0.99). f-FEMRA scored significantly better for venous image quality than GEMRA (4.62 ± 0.42 vs 4.19 ± 0.56, p = 0.04). CNR in the IVC was significantly higher for steady-state f-FEMRA than GEMRA regardless of the enhancement phase (p < 0.05). Conclusions: Comprehensive vascular MR imaging of the thorax, abdomen and pelvis can be completed in as little as 5 min within the magnet bore using f-FEMRA, facilitating acceptance by patients with claustrophobia and streamlining workflow. Advances in knowledge: A focused approach to vascular imaging with ferumoxytol can be performed in patients with claustrophobia, limiting time in the magnet bore to 10 min or less, while acquiring fully diagnostic images of the thorax, abdomen and pelvis.

2020 ◽  
Author(s):  
Jia-Suo Jiang ◽  
Liu-Ning Zhu ◽  
Qian Wu ◽  
Yi Sun ◽  
Wei Liu ◽  
...  

Abstract Background To evaluate the feasibility of using simultaneous multi-slice (SMS) readout segmentation of long variable echo-trains (RESOLVE) diffusion-weighted imaging (DWI) to assess parotid gland tumors, compared with conventional RESOLVE DWI Methods From September 2018 to December 2018, 20 consecutive patients with parotid tumors who underwent MRI scan for pre-surgery evaluation were enrolled. SMS-RESOLVE DWI and conventional RESOLVE DWI were scanned with matched imaging parameters, respectively. The scan time of two DWI sequences was recorded. Qualitative (anatomical structure differentiation, lesion display, artifact, and overall image quality) and quantitative (apparent diffusion coefficient, ADC; ratio of signal-to-noise ratio, SNR ratio; ratio of contrast-to-noise ratio, CNR ratio) assessments of image quality were performed, and compared between SMS-RESOLVE DWI and conventional RESOLVE DWI. Paired t-test was used for statistical analyses. Results The scan time was 3 minutes and 41 seconds for SMS-RESOLVE DWI, and 5 minutes and 46 seconds for conventional RESOLVE DWI. SMS-RESOLVE DWI produced similar qualitative image quality with RESOLVE DWI (anatomical structure differentiation, P = 0.164; lesion display, P = 0.193; artifact, P = 0.330; overall image quality, P = 0.083). Meanwhile, there were no significant difference on ADCLesion (P = 0.298), ADCMasseter (P = 0.122), SNR ratio (P = 0.584) and CNR ratio (P = 0.217) between two DWI sequences. Conclusion Compared with conventional RESOLVE DWI, SMS-RESOLVE DWI could provide comparable image quality using markedly reduced scan time. SMS could increase the clinical usability of RESOLVE technique for DWI of parotid gland.


2020 ◽  
Author(s):  
Jia-Suo Jiang ◽  
Liu-Ning Zhu ◽  
Qian Wu ◽  
Yi Sun ◽  
Wei Liu ◽  
...  

Abstract Background To evaluate the feasibility of using simultaneous multi-slice (SMS) readout segmentation of long variable echo-trains (RESOLVE) diffusion-weighted imaging (DWI) to assess parotid gland tumors, compared with conventional RESOLVE DWIMethods From September 2018 to December 2018, 20 consecutive patients with parotid tumors who underwent MRI scan for pre-surgery evaluation were enrolled. SMS-RESOLVE DWI and conventional RESOLVE DWI were scanned with matched imaging parameters, respectively. The scan time of two DWI sequences was recorded. Qualitative (anatomical structure differentiation, lesion display, artifact, and overall image quality) and quantitative (apparent diffusion coefficient, ADC; ratio of signal-to-noise ratio, SNR ratio; ratio of contrast-to-noise ratio, CNR ratio) assessments of image quality were performed, and compared between SMS-RESOLVE DWI and conventional RESOLVE DWI by using Paired t-test. Two-sided P value less than 0.05 indicated significant difference.[l1] Results The scan time was 3 minutes and 41 seconds for SMS-RESOLVE DWI, and 5 minutes and 46 seconds for conventional RESOLVE DWI. SMS-RESOLVE DWI produced similar qualitative image quality with RESOLVE DWI (anatomical structure differentiation, P=0.164; lesion display, P=0.193; artifact, P=0.330; overall image quality, P=0.083). Meanwhile, there were no significant difference on ADCLesion (P=0.298), ADCMasseter (P=0.122), SNR ratio (P=0.584) and CNR ratio (P=0.217) between two DWI sequences. Conclusion Compared with conventional RESOLVE DWI, SMS-RESOLVE DWI could provide comparable image quality using markedly reduced scan time. SMS could increase the clinical usability of RESOLVE technique for DWI of parotid gland.


2019 ◽  
Vol 829 ◽  
pp. 252-257
Author(s):  
Azhari ◽  
Yohanes Hutasoit ◽  
Freddy Haryanto

CBCT is a modernized technology in producing radiograph image on dentistry. The image quality excellence is very important for clinicians to interpret the image, so the result of diagnosis produced becoming more accurate, appropriate, thus minimizing the working time. This research was aimed to assess the image quality using the blank acrylic phantom polymethylmethacrylate (PMMA) (C­5H8O2)n in the density of 1.185 g/cm3 for evaluating the homogeneity and uniformity of the image produced. Acrylic phantom was supported with a tripod and laid down on the chin rest of the CBCT device, then the phantom was fixed, and the edge of the phantom was touched by the bite block. Furthermore, the exposure of the X-ray was executed toward the acrylic phantom with various kVp and mAs, from 80 until 90, with the range of 5 kV and the variation of mA was 3, 5, and 7 mA respectively. The time exposure was kept constant for 25 seconds. The samples were taken from CBCT acrylic images, then as much as 5 ROIs (Region of Interest) was chosen to be analyzed. The ROIs determination was analyzed by using the ImageJ® software for recognizing the influence of kVp and mAs towards the image uniformity, noise and SNR. The lowest kVp and mAs had the result of uniformity value, homogeneity and signal to noise ratio of 11.22; 40.35; and 5.96 respectively. Meanwhile, the highest kVp and mAs had uniformity value, homogeneity and signal to noise ratio of 16.96; 26.20; and 5.95 respectively. There were significant differences between the image uniformity and homogeneity on the lowest kVp and mAs compared to the highest kVp and mAs, as analyzed with the ANOVA statistics analysis continued with the t-student post-hoc test with α = 0.05. However, there was no significant difference in SNR as analyzed with the ANOVA statistic analysis. The usage of the higher kVp and mAs caused the improvement of the image homogeneity and uniformity compared to the lower kVp and mAs.


Author(s):  
Martin Georg Zeilinger ◽  
Marco Wiesmüller ◽  
Christoph Forman ◽  
Michaela Schmidt ◽  
Camila Munoz ◽  
...  

Abstract Objectives To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting. Material and methods Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed. Results LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001). Conclusion The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression. Key Points • Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. • Robust Dixon water-fat separation aids in the assessment of pericardial disease. • The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times.


2018 ◽  
Vol 59 (11) ◽  
pp. 1316-1325 ◽  
Author(s):  
Georg Böning ◽  
Roman A Rotzinger ◽  
Johannes F Kahn ◽  
Patrick Freyhardt ◽  
Diane M Renz ◽  
...  

Background Endovascular aneurysm repair (EVAR) requires lifelong surveillance by computed tomography angiography (CTA). This is attended by a substantial accumulation of radiation exposure. Iterative reconstruction (IR) has been introduced to approach dose reduction. Purpose To evaluate adaptive statistical iterative reconstruction (ASIR) at different levels of tube voltage concerning image quality and dose reduction potential in follow-up post EVAR. Material and Methods One hundred CTAs in 67 patients with EVAR were examined using five protocols: protocol A (n = 40) as biphasic standard using filtered back projection (FBP) at 120 kV; protocols B (n = 40), C (n = 10), and D1 (n = 5) biphasic using ASIR at 120, 100, and 80 kV, respectively; and protocol D2 (n = 5) with a monophasic splitbolus ASIR protocol at 80 kV. Image quality was assessed quantitatively and qualitatively. Applied doses were determined. Results Applied doses in ASIR protocols were significantly lower than FBP standard (up to 75%). Compared to protocol A, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) (e.g. arterial CNR intra-/extra-stent lumen: A = 35.4 ± 13.5, B = 34.2 ± 10.0, C = 29.6 ± 6.8, D1 = 32.1 ± 6.3, D2 = 40.8 ± 23.1) in protocol B were equal and in protocols C and D equal to partially inferior, however not decisive for diagnostic quality. Subjective image quality ratings in all protocols were good to excellent without impairments of diagnostic confidence (A–D2: 5), with high inter-rater agreement (60–100%). Conclusion ASIR contributes to significant dose reduction without decisive impairments of image quality and diagnostic confidence. We recommend an adapted follow-up introducing ASIR and combined low-kV in the long-term surveillance after EVAR.


2019 ◽  
Vol 34 (4) ◽  
pp. 375-383
Author(s):  
Anja Resnik ◽  
Janez Zibert ◽  
Nejc Mekis

The purpose of this research was to determine how dose area product, effective dose, absorbed doses to specific organs, and image quality changed according to different automatic exposure control positions in pelvis imaging. The research was carried out in two parts. The study was conducted on an anthropomorphic phantom and 200 patients referred to pelvic imaging. We measured the dose area product, field size, height, and mass. Then we calculated the effective dose and absorbed dose for individual organs accordingly. Lateral ionizing cells were first positioned in line with the iliac crests (head towards position) and subsequently, with the femoral neck (head away position). All the images were independently evaluated by three radiologists using ViewDEX and objective image analysis was performed measuring contrast-to-noise ratio and signal-to-noise ratio. We found no significant differences in the Siemens Luminos unit in any of the inspected parameters. However, there was a significant difference in dose area product (37.3 %), effective dose (35.7 %) and average absorbed dose to selected individual organs (36.7 %) when the head away position of the patient was used and the image quality increased. Based on these results, we can propose that the optimal position of the patient regarding the ionizing cells is the head away position.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Pamminger ◽  
C Kranewitter ◽  
C Kremser ◽  
M Reindl ◽  
SJ Reinstadler ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Preprocedural transcatheter aortic valve intervention (TAVI) evaluation requires reliable aortic root measurements for correct valve sizing. Purpose To prospectively compare image-quality, reliability and graft sizing of a prototype self-navigated and a navigator-gated non-contrast three dimensional (3D) whole-heart magnetic-resonance-angiography (MRA) sequence with computed-tomography-angiography (CTA) for planning transcatheter-aortic-valve-intervention (TAVI). Methods Self- and navigator-gated 1.5T MRA were performed in 27 patients (aged 83 ± 5 years, 41% male) for aortic root sizing and coronary ostia height measurements; 15 (56%) patients underwent additional CTA. Subjective-image quality was graded on a 4-point Likert scale, objective MRA image-quality was assessed by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Continuous MRA and CTA measurements were analyzed with regression and Bland-Altman analysis, valve sizing by kappa statistics. Results Median image-quality as rated by two observers was 1.5 [interquartile range (IQR) 1-3] for self-navigated MRA and 1 [IQR 1-2] for navigator-gated MRA (p = 0.059). SNR and CNR were comparable between MRA sequences (p = 0.471 and 0.445, respectively). Acquisition time was shorter for self-navigated MRA compared to navigator-gated MRA (5.5 ± 1 minutes vs, 6.5 ± 2 minutes, p = 0.029).  Inter-observer correlation of aortic root measurements was high to very high for both self- and navigator-gated MRA (r = 0.75 to 0.94 and r = 0.85 to 0.96, respectively, all p &lt; 0.0001). Theoretical prosthetic valve sizing of self-navigated MRA and CTA was equivalent (κ=1). However, in four patients (15%) one coronary ostium each (right coronary artery 3, left main artery 1) was not clearly definable on self-navigated MRA. Conclusion Self-navigated MRA enables aortic annulus TAVI measurements without significant difference to navigator-gated MRA at shortened acquisition time. Prosthesis sizing by self-navigated MRA measurements is equivalent to navigator-gated MRA and CTA-based choice. Abstract Figure.


VASA ◽  
2014 ◽  
Vol 43 (4) ◽  
pp. 278-283 ◽  
Author(s):  
Qian Chen ◽  
Rongfeng Qi ◽  
Xiaoqing Cheng ◽  
Changsheng Zhou ◽  
Song Luo ◽  
...  

Background: To evaluate the value of time-of-flight MR angiography (TOF MRA) for the assessment of extracranial-intracranial (EC-IC) bypass in Moyamoya disease in comparison with computed tomography angiography (CTA). Patients and methods: A consecutive series of 23 patients with Moyamoya disease were analyzed retrospectively. Twenty three patients underwent 25 procedures of extracranial-intracranial bypass. Cranial CTA was performed within one week after the surgery to assess bypass patency. Then TOF MRA was scanned within 24 h after CTA on a 3T MRI system. Using 5-point scales (0 = poor to 4 = excellent), two radiologists rated the image quality and vessel integrity of bypass for three segments (extracranial, trepanation, intracranial). Results: Image quality was high in both CTA and TOF MRA (mean quality score 3.84 ± 0.37 and 3.8 ± 0.41), without statistical difference (p = 0.66). Mean scores of TOF MRA with respect to bypass visualization were higher than CTA in the intracranial segment (p = 0.026). No significant difference of bypass visualization regarding the extracranial and trepanation segments was found between TOF MRA and CTA (p = 0.66 and p = 0.34, respectively). For the trepanation segment, TOF MRA showed pseudo lesions in 2 of all 25 cases. Conclusions: 3T TOF MRA, a non-contrast technique not exposing the patients to radiation, proved to be at least equal to CTA for the assessment of EC-IC bypass, and even superior to CTA with respect to the intracranial segment. In addition, readers should be aware of a potential overestimation showing focal pseudo lesions of the bypass at the trepanation segment in TOF MRA.


2014 ◽  
Vol 2 (2) ◽  
pp. 47-58
Author(s):  
Ismail Sh. Baqer

A two Level Image Quality enhancement is proposed in this paper. In the first level, Dualistic Sub-Image Histogram Equalization DSIHE method decomposes the original image into two sub-images based on median of original images. The second level deals with spikes shaped noise that may appear in the image after processing. We presents three methods of image enhancement GHE, LHE and proposed DSIHE that improve the visual quality of images. A comparative calculations is being carried out on above mentioned techniques to examine objective and subjective image quality parameters e.g. Peak Signal-to-Noise Ratio PSNR values, entropy H and mean squared error MSE to measure the quality of gray scale enhanced images. For handling gray-level images, convenient Histogram Equalization methods e.g. GHE and LHE tend to change the mean brightness of an image to middle level of the gray-level range limiting their appropriateness for contrast enhancement in consumer electronics such as TV monitors. The DSIHE methods seem to overcome this disadvantage as they tend to preserve both, the brightness and contrast enhancement. Experimental results show that the proposed technique gives better results in terms of Discrete Entropy, Signal to Noise ratio and Mean Squared Error values than the Global and Local histogram-based equalization methods


2021 ◽  
pp. 197140092110087
Author(s):  
Andrea De Vito ◽  
Cesare Maino ◽  
Sophie Lombardi ◽  
Maria Ragusi ◽  
Cammillo Talei Franzesi ◽  
...  

Background and purpose To evaluate the added value of a model-based reconstruction algorithm in the assessment of acute traumatic brain lesions in emergency non-enhanced computed tomography, in comparison with a standard hybrid iterative reconstruction approach. Materials and methods We retrospectively evaluated a total of 350 patients who underwent a 256-row non-enhanced computed tomography scan at the emergency department for brain trauma. Images were reconstructed both with hybrid and model-based iterative algorithm. Two radiologists, blinded to clinical data, recorded the presence, nature, number, and location of acute findings. Subjective image quality was performed using a 4-point scale. Objective image quality was determined by computing the signal-to-noise ratio and contrast-to-noise ratio. The agreement between the two readers was evaluated using k-statistics. Results A subjective image quality analysis using model-based iterative reconstruction gave a higher detection rate of acute trauma-related lesions in comparison to hybrid iterative reconstruction (extradural haematomas 116 vs. 68, subdural haemorrhages 162 vs. 98, subarachnoid haemorrhages 118 vs. 78, parenchymal haemorrhages 94 vs. 64, contusive lesions 36 vs. 28, diffuse axonal injuries 75 vs. 31; all P<0.001). Inter-observer agreement was moderate to excellent in evaluating all injuries (extradural haematomas k=0.79, subdural haemorrhages k=0.82, subarachnoid haemorrhages k=0.91, parenchymal haemorrhages k=0.98, contusive lesions k=0.88, diffuse axonal injuries k=0.70). Quantitatively, the mean standard deviation of the thalamus on model-based iterative reconstruction images was lower in comparison to hybrid iterative one (2.12 ± 0.92 vsa 3.52 ± 1.10; P=0.030) while the contrast-to-noise ratio and signal-to-noise ratio were significantly higher (contrast-to-noise ratio 3.06 ± 0.55 vs. 1.55 ± 0.68, signal-to-noise ratio 14.51 ± 1.78 vs. 8.62 ± 1.88; P<0.0001). Median subjective image quality values for model-based iterative reconstruction were significantly higher ( P=0.003). Conclusion Model-based iterative reconstruction, offering a higher image quality at a thinner slice, allowed the identification of a higher number of acute traumatic lesions than hybrid iterative reconstruction, with a significant reduction of noise.


Sign in / Sign up

Export Citation Format

Share Document