scholarly journals Dosimetric evaluation of the gantry sag effect in clinical SRS plans

BJR|Open ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 20180026
Author(s):  
Egor Borzov ◽  
Alex Nevelsky ◽  
Rachel Bar-Deroma ◽  
Itzhak Orion

Objectives: The gantry sag introduces a largely reproducible variation of the radiation field center around the radiation isocenter. The purpose of this work is to assess the change of the dose distribution caused by the gantry sag in clinical stereotactic plans. Methods: Brain stereotactic radio surgery treatment plans were evaluated and grouped according to radiation therapy planning technique. Group 1 was planned with volumetric arc therapy technique using coplanar arcs while Group 2—non-coplanar arcs. To simulate the gantry sag effect in the treatment planning system, the original plan segments were divided into four groups according to corresponding gantry angles: upper, lower, left and right quadrants. Then, isocenter of the upper quadrant was shifted towards “Gun”, isocenter of the lower quadrant was shifted towards “Target” and isocenter of the left and right quadrants was left at its original positions. The magnitude of the shift was 0.5, 1 and 1.5 mm in each direction, corresponding to 1, 2 and 3 mm of gantry isocenter diameter. To estimate the changes in dose distribution between the original and modified plans, the following dose–volume metrics were tracked: planning target volume (PTV) coverage (V99;PTV), hotspot dose in PTV (DPTV;0.015cc)), coldspot doses in PTV (DPTV;(V-0.015cc)), conformity and gradient indexes, maximum point doses in organs at risk (OAR, DOAR;0.015cc) and outside PTV (DoutsidePTV;0,015cc). For the second group of patients volume of brain receiving 12 Gy (V12Gy) was analyzed. Results: The mean relative change of all metrics was within −2%/+2.5% range for both techniques for isocenter diameter up to 2 mm. Isocenter diameter of 3 mm causes significant changes in V99;PTV, conformity and gradient indexes for coplanar, and additionally in DPTV;(V-0.015cc) for non-coplanar plans. The largest increase of maximum point dose in OAR was 1.1, 2.1 and 3.2% for ±0.5, ±1 and ±1.5 mm shift, respectively. Conclusion: The results demonstrate dosimetric effect of gantry sag depending on its value. By itself, the gantry sag effect does not produce clinically perceptible dose changes neither for PTV nor for OARs for shift ranges up to ±1 mm, both for coplanar and non-coplanar delivery techniques. For the larger gantry sag magnitude dosimetric changes can become significant, especially for non-coplanar plans. It indicates that 2 mm diameter tolerance of gantry isocenter postulated in TG-142 is reasonable, as variations in excess of this value start to affect the overall dosimetric and spatial uncertainty. Advances in knowledge: Dosimetric evaluation of the gantry sag effect in clinical stereotactic radio surgery plans is presented for the first time.

2020 ◽  
Author(s):  
Yijiang Li ◽  
Han Bai ◽  
Danju Huang ◽  
Feihu Chen ◽  
Xuhong Liu ◽  
...  

Abstract Purpose: This study aimed to evaluate (1) the performance of the Auto-Planning module embedded in the Pinnacle treatment planning system (TPS) with 30 left-side breast cancer plans and (2) the dose-distance correlations between dose-based patients and overlap volume histogram-based (OVH) patients. Method: A total of 30 patients with left-side breast cancer after breast-conserving surgery were enrolled in this study. The clinical manual-planning (MP) and the Auto-Planning (AP) plans were generated by Monaco and by the Auto-Planning module in Pinnacle respectively. The geometric information between organ at risk (OAR) and planning target volume (PTV) of each patient was described by the OVH. The AP and MP plans were ranked to compare with the geometry-based patients from OVH. The Pearson product-moment correlation coefficient (R) was used to describe the correlations between dose-based patients (APs and MPs) and geometry-based patients (OVH). Dosimetric differences between MP and AP plans were evaluated with statistical analysis. Result: The correlation coefficient (mean R = 0.71) indicated that the AP plans have a high correlation with geometry-based patients from OVH, whereas the correlation coefficient (mean R = 0.48) shows a weak correlation between MP plans and geometry-based patients. For different indicators, the dose distribution of V5Gy in the ipsilateral lung (AP: mean R = 0.82; MP: mean R = 0.58) is more relevant to geometry-based patients compared to the dose distribution of in the heart (AP: mean R = 0.4; MP: mean R = 0.19). The dosimetric comparison revealed a statistically significant improvement in ipsilateral lung V5Gy and V10Gy and in the heart V5Gy of AP plans compared to MP plans. Conclusion: The overall results of AP plans were superior to MP plans. The dose distribution in AP plans was more consistent with the distance-dose relationship described by OVH. After eliminating the interference of human factors, the AP was able to provide more stable and objective plans for radiotherapy patients.


2020 ◽  
Author(s):  
Yijiang Li ◽  
Han Bai ◽  
Danju Huang ◽  
Feihu Chen ◽  
Xuhong Liu ◽  
...  

Abstract BackgroundThis study aimed to evaluate (1) the performance of Auto-Planning module embedded in Pinnnacle treatment planning system (TPS) with 30 left-side breast cancer plans; (2) the dose-distance relations based on overlap volume histogram (OVH) curve.Method30 patients with left-side breast cancer after breast-serving surgery were enrolled in this study. The clinical manual plan (MP) and the automatic plan (AP) were generated by Monaco and Auto-planning module respectively. The geometric relations between organ at risk (OAR) and planning target volume (PTV) of each patient were described by the overlap volume histogram (OVH). The patients were ranked according to the extension distance from PTV at a specific volume on the OVH curve. The MP and AP plans then were ranked to compare with the ranking of the OVH curves. Dosimetric difference between MP and AP plans were evaluated with statistical analysis.ResultThe comparative result shows a higher degree of correlation between AP and OVH curve. For different indicators, the dose distribution of , , in ipsilateral lung is more consistent with the distance-dose relation compared to the dose distribution of in heart. Dosimetric comparison shows a statistically significant improvement in ipsilateral lung and , and in heart of AP plans compared to MP plans. However, the result of ipsilateral lung of MP plans are better than that of AP plans.ConclusionThe overall results of AP plans are superior to MP plans. The dose distribution in AP plans are more consistent with the distance-dose relationship, which was described by OVH. After eliminating the interference of human factors, the AP is able to provide more stable and objective plans for radiotherapy patients.


2018 ◽  
Vol 17 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Khalid Iqbal ◽  
Geoffrey S. Ibbott ◽  
Ryan G. Lafratta ◽  
Kent A. Gifford ◽  
Muhammad Akram ◽  
...  

AbstractPurposeTo determine the feasibility of an anthropomorphic breast polyurethane-based three-dimensional (3D) dosimeter with cavity to measure dose distributions and skin dose for a commercial strut-based applicator strut-adjusted volume implant (SAVI™) 6–1.Materials and methodsAn anthropomorphic breast 3D dosimeter was created with a cavity to accommodate the SAVI™ strut-based device. 2 Gy was prescribed to the breast dosimeter having D95 to planning target volume evaluation (PTV_EVAL) while limiting 125% of the prescribed dose to the skin. Independent dose distribution verification was performed with GAFCHROMIC® EBT2 film. The dose distribution from the 3D dosimeter was compared to the distributions from commercial brachytherapy treatment planning system (TPS) and film. Point skin doses, line profiles and dose–volume histogram (DVHs) for the skin and PTV_EVAL were compared.ResultsThe maximum difference in skin dose for TPS and the 3D dosimeter was 4% whereas 41% between the TPS and EBT2 film. The maximum dose difference for line profiles between TPS, 3D dosimeter, and film was 4·1%. DVHs of skin and PTV_EVAL for TPS and 3D dosimeter differed by a maximum of 4% at 5 mm depth and skin differed by a maximum 1·5% between TPS and 3D dosimeter. The criterion for gamma analysis comparison was 92·5% at ±5%±3 mm criterion. The TPS demonstrated at least ±5% comparability in predicting dose to the skin, PTV_EVAL and normal breast tissue.Conclusions3D anthropomorphic polyurethane dosimeter with cavity gives comparable results to the TPS dose predictions and GAFCHROMIC® EBT2 film results in the context of HDR brachytherapy.


2019 ◽  
Vol 19 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Payal Raina ◽  
Sudha Singh ◽  
Rajanigandha Tudu ◽  
Rashmi Singh ◽  
Anup Kumar

AbstractAim:The aim of this study was to compare volumetric modulated arc therapy (VMAT) with dynamic intensity-modulated radiation therapy (dIMRT) and step-and-shoot IMRT (ssIMRT) for different treatment sites.Materials and methods:Twelve patients were selected for the planning comparison study. This included three head and neck, three brain, three rectal and three cervical cancer patients. Total dose of 50 Gy was given for all the plans. Plans were done for Elekta synergy with Monaco treatment planning system. All plans were generated with 6 MV photons beam. Plan evaluation was based on the ability to meet the dose volume histogram, dose homogeneity index, conformity index and radiation delivery time, and monitor unit needs to deliver the prescribed dose.Results:The VMAT and dIMRT plans achieved the better conformity (CI98% = 0·965 ± 0·023) and (CI98% = 0·939 ± 0·01), respectively, while ssIMRT plans were slightly inferior (CI98% = 0·901 ± 0·038). The inhomogeneity in the planning target volume (PTV) was highest with ssIMRT with HI equal to 0·097 ± 0·015 when compared to VMAT with HI equal to 0·092 ± 0·0369 and 0·095 ± 0·023 with dIMRT. The integral dose is found to be inferior with VMAT 105·31 ± 53·6 (Gy L) when compared with dIMRT 110·75 ± 52·9 (Gy L) and ssIMRT 115 38 ± 55·1(Gy L). All the techniques respected the planning objective for all organs at risk. The delivery time per fraction for VMAT was much lower than dIMRT and ssIMRT.Findings:Our results indicate that dIMRT and VMAT provide better sparing of normal tissue, homogeneity and conformity than ssIMRT with reduced treatment delivery time.


2017 ◽  
Vol 8 (1) ◽  
pp. 29-34
Author(s):  
Nursama Heru Apriantoro ◽  
Bambang Sutrisno Wibowo ◽  
Muhammad Irsal ◽  
Prima Chintya Delsi Kasih

This study aims to analyze the difference in results between TPS 3D-CRT radiotherapy irradiation technique and IMRT radiotherapy irradiation technique in nasopharyngeal cancer cases based on the doses received by the target volume and organs at risk and results of isodosis curve which include the value of the index conformity and homogeneity index value. Type of this research is quantitative experimental method. As for the population was taken in 10 patients consisting of 5 male and 5 female patients with nasopharyngeal cancer who received radiation therapy with 3D-CRT irradiation technique and IMRT radiation technique. Meaningfully, the results shows that are no difference in the dose received by the target volume, the dose received by organs at risk, and the curve isodose on these two techniques, including index values of conformity and homogeneity index. In conclusion, IMRT radiotherapy irradiation technique for nasopharyngeal cancer is more prioritized than 3DCRT radiotherapy irradiation technique, as the radiotherapy principle can be achieved by using IMRT radiotherapy irradiation technique.


2016 ◽  
Vol 50 (4) ◽  
pp. 433-441 ◽  
Author(s):  
Primoz Petric ◽  
Robert Hudej ◽  
Noora Al-Hammadi ◽  
Barbara Segedin

Abstract Background Standard applicators for cervical cancer Brachytherapy (BT) do not always achieve acceptable balance between target volume and normal tissue irradiation. We aimed to develop an innovative method of Target-volume Density Mapping (TDM) for modelling of novel applicator prototypes with optimal coverage characteristics. Patients and methods. Development of Contour-Analysis Tool 2 (CAT-2) software for TDM generation was the core priority of our task group. Main requests regarding software functionalities were formulated and guided the coding process. Software validation and accuracy check was performed using phantom objects. Concepts and terms for standardized workflow of TDM post-processing and applicator development were introduced. Results CAT-2 enables applicator-based co-registration of Digital Imaging and Communications in Medicine (DICOM) structures from a sample of cases, generating a TDM with pooled contours in applicator-eye-view. Each TDM voxel is assigned a value, corresponding to the number of target contours encompassing that voxel. Values are converted to grey levels and transformed to DICOM image, which is transported to the treatment planning system. Iso-density contours (IDC) are generated as lines, connecting voxels with same grey levels. Residual Volume at Risk (RVR) is created for each IDC as potential volume that could contain organs at risk. Finally, standard and prototype applicators are applied on the TDM and virtual dose planning is performed. Dose volume histogram (DVH) parameters are recorded for individual IDC and RVR delineations and characteristic curves generated. Optimal applicator configuration is determined in an iterative manner based on comparison of characteristic curves, virtual implant complexities and isodose distributions. Conclusions Using the TDM approach, virtual applicator prototypes capable of conformal coverage of any target volume, can be modelled. Further systematic assessment, including studies on clinical feasibility, safety and effectiveness are needed before routine use of novel prototypes can be considered.


Author(s):  
F Falahati ◽  
A Nickfarjam ◽  
M Shabani

Background: Intensity modulated radiation therapy (IMRT) is an advanced method for delivery of three dimensional therapies, which provides optimal dose distribution with giving multiple nonuniform fluency to the patient. The complex dose distribution of IMRT should be checked to ensure that the accurate dose is delivered. Today, film dosimetry is a powerful tool for radiotherapy treatment Quality Assurance (QA) and a good method to verify dose distribution in phantoms. Objective: This study aimed to evaluate the accuracy of IMRT treatment planning system, Prowess Panther® software, with Gafchromic EBT3 films in a inhomogeneity phantomMethod: The IMRT plan was generated by Prowess Panther® treatment planning system (TPS) version 5.2 on a inhomogeneity phantom, then it was irradiated by ONCOR linear accelerator (Linac) with 6 (MV) photon beam energy. The Gafchromic EBT3 film located between the phantom has measured the dose distribution.­ To compare between TPS calculated doses and film measured doses, Gamma criteria 3%/3 mm, 4%/4 mm, 5%/5 mm, 6%/6 mm and 7%/7 mm Dose Difference (DD) and Distance to Agreement (DTA), respectively were used.Results: Gammas passing rates for PTV are obtained 67.5% for 3%/3mm, 78.8% for 4%/4mm, 86.3% for 5%/5mm, 91.2% for 6%/6mm and 94.3% for 7%/7mm and for organs at risk is 72.4% for 3%/3mm, 82.8% for 4%/4mm, 89.8% for 5%/5mm, 93.3% for 6%/6mm and 95.4% for 7%/7mm (respectively DD/DTA). By increasing the range of criteria the capability increased.Conclusion: The results show that the use of EBT3 film in a inhomogeneity phantoms allows us to evaluate the dose differences between the EBT3 measured dose distribution and TPS calculated dose distribution .Hence, a result Prowess Panther® TPS can be used for IMRT technique treatment.


2020 ◽  
Author(s):  
Zhen Xu ◽  
Xiao-Dong Li ◽  
Lu Fu ◽  
Yong-Hua Yu

Abstract Background: To compare the difference of location by computed tomography (CT) and multiparametric magnetic resonance imaging (mpMRI) on the target delineation and volume for organs at risk (OARs) among patients with prostate cancer. Methods: T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and CT were performed among 11 patients who received radiotherapy for prostate cancer at our center between August 2018 and December 2019. The target areas were delineated using the Eclipse system, and the radiotherapy plans were made based on the treatment planning system (TPS) to compare target volume and dose-volume histogram (DVH) relative to rectum and bladder. Results: The clinical target volume (CTV) of T1WI and T2WI decreased by 18.8% (P=0.001) and 22.72% (P=0.003), respectively, compared with CT. The planning target volume (PTV) on T1WI and T2WI were 20.45% (P=0.015) and 22.31% (P= 0.008) smaller than that defined by CT. There was no significant difference in either CTV or PTV between the areas outlined on T1WI and T2WI. The DVH resulting from CT and MRI comparisons showed that the rectum and bladder dose levels were lower with MRI images compared with CT. It should be noted that at the lateral directions, the range of outlining on T2WI sequence were significantly smaller than others. Conclusion: Target planning based on mpMRI (T1WI, T2WI) is more precise than CT, which can significantly reduce the range of the target area and the volume of rectum and bladder exposed to high levels of radiation, improve the fitness and radiographic accuracy of the target area, especially on T2WI.


2019 ◽  
Vol 6 (3) ◽  
pp. 13-18
Author(s):  
Tal Eitan ◽  
Nicholas J. Damico ◽  
Rajesh Pidikiti ◽  
Michael Z. Kharouta ◽  
Donald Dobbins ◽  
...  

Abstract Purpose: Reirradiation in the scalp area can be challenging given the proximity to organs at risk (OARs), such as the eye and brain. Our aim is to evaluate the dosimetric differences of volumetric modulated arc therapy (VMAT) and electron beam therapy (EBT) compared with 3-dimensional proton beam therapy (PBT). Patients and Methods: We evaluated a patient with recurrent angiosarcoma of the left temporal scalp after prior surgical resections and radiation therapy to 60 Gy in 30 fractions who needed reirradiation. We generated VMAT, EBT, and PBT plans using the Pinnacle Treatment Planning System (TPS). Both VMAT and EBT plans used a skin bolus, whereas no bolus was used for the proton plan. Doses to the OARs, including cochlea, eyes, lens, lacrimal glands, optic nerves, optic chiasm, pituitary gland, and underlying brain, were compared. Results: The reirradiation treatment dose was 60 Gy(RBE). Target volume coverage was comparable in all plans. Compared with VMAT and EBT, the PBT plan showed reductions in mean and maximum doses to all OARs. Without the use of protons, several OARs would have exceeded dose tolerance utilizing VMAT or electrons. Dose reduction of up to 100% was achieved for central and contralateral OARs. Conclusion: Compared with VMAT and EBT, PBT resulted in dose reductions to all OARs, while maintaining excellent target coverage. PBT showed a significant advantage in treating superficially located skin cancers, such as angiosarcoma, without the need for a bolus. PBT can be considered in the upfront treatment and certainly in the reirradiation setting.


2020 ◽  
Vol 19 ◽  
pp. 153303382094577
Author(s):  
Masahiro Yuasa ◽  
Hiromasa Kurosaki

Background: There are very few studies on noncoplanar radiation in tomotherapy because deformable image registration is not implemented in the TomoTherapy Planning Station, a treatment planning device used in tomotherapy. This study examined whether noncoplanar radiation can be performed on the head using a tilt-type head and neck fixture and deformable image registration. Methods: Planning target volume spheres with diameters of 2, 3, and 4 cm were set on a head phantom, and computed tomography images were taken at 0° and 40° using a tilt-type head and neck fixture. Irradiation plans were created in the Tomotherapy Planning Station. Noncoplanar radiation was simulated, and the dose volume was evaluated by adding the 0° dose distribution and 40° dose distribution using the deformable image registration of the RayStation treatment planning system. Results: The ratio of the phantom volume to the irradiation dose for 20% to 30% of the planning target volume in noncoplanar radiation was smaller than that for 40% to 90% of the planning target volume in single-section irradiation at 0° or 40°. Conclusions: Noncoplanar radiation on the head region using tomotherapy was possible by using a tilt-type head and neck fixture, and the dose distribution could be evaluated using deformable image registration. This method helps reduce the dose of the organ-at-risk region located slightly away from the planning target volume.


Sign in / Sign up

Export Citation Format

Share Document