Inadequate Standards Currently Applied by Local Authorities to Determine Statutory Nuisance from LF and Infrasound

Author(s):  
Hazel Guest

Knowledge of the latest results in Low Frequency Noise (LFN) and infrasound research are not being transmitted, either to government whose job it is to legislate on standards of noise and vibration, or to local authority officers whose job it is to look into complaints and enforce standards. The dismissal of complaints is frequently based on inappropriate techniques such as the application of A-weighting, a lack of understanding of vibration transmission including building resonance, and a lack of basic understanding about the perception of low frequencies by complainants, for instance the lowering of the lower audibility threshold arising from exposure. This paper asks those involved in research to ensure that their relevant findings are more widely disseminated, along with advice to legislators and local authorities on measurement, information on LF and infrasound resonance in buildings, recommendations for appropriate standards to be used in assessing LF and infrasound as a Statutory Nuisance, and information about the effects of long-term exposure. There is a need for more research in situ into specific effects.

Author(s):  
Yang Song ◽  
Jian Kang

Existing approaches to reducing the low-frequency noise exposure of dwellings are not always sufficient. This study investigated the significance of dwelling layout design for low-frequency noise control. The sound distribution in six typical Chinese dwelling layouts was analysed using in-situ measurements under steady-state noise of various low frequencies. The results showed that among two-bedroom dwelling layouts, the overall average noise reduction varied considerably (6 dB). The noise reduction for room levels (number of rooms sound crosses) 1–2 and 2–3 varies by 5 and 3 dB, respectively, and the noise reduction at door openings varies by 5 dB. A model to approximate the low-frequency noise reduction of a layout was developed using the polyline distance from the noise source and the number of walls the polyline has to cross, which were clearly shown to influence low-frequency noise reduction and seem to be the strongest investigated factors.


2015 ◽  
Vol 72 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Nils Olav Handegard ◽  
Alex De Robertis ◽  
Guillaume Rieucau ◽  
Kevin Boswell ◽  
Gavin J. Macaulay

Fish avoidance of vessels can bias fisheries-independent surveys. To understand these biases, recordings of underwater radiated vessel noise from a noise-reduced and a conventional research vessel were played back at the same sound pressure levels (SPL) as experienced in situ to Atlantic herring (Clupea harengus) in a net pen at two different densities. The noise-reduced vessel recording was also scaled to the same SPL as the conventional vessel to test if characteristics other than SPL affected the reactions. Overall, only weak reactions were observed, but reactions were stronger in the low-density school, in the middle of the pen, and for the scaled silent vessel compared with the conventional vessel. These observations may be attributable to the lack of low frequencies (<50 Hz) in the playbacks, differential motivation for reaction driven by fish density, higher low-frequency noise in the middle of the pen (but lower overall SPL), and characteristics other than SPL. These results call into question the use of SPL as a proxy for fish reaction to vessels as used in standards for construction of research vessels.


Author(s):  
N. Broner ◽  
H.G. Leventhall

Over recent years, it has become apparent that low frequency noise annoyance is more widespread than originally believed. Annoyance has occurred where the emitted noise is unbalanced towards the low frequencies even though the dB(A) level has been low. Following laboratory experiments carried out as part of an investigation into low frequency annoyance, combined with field annoyance data, the Low Frequency Noise Rating (LFNR) curves are proposed for the assessment of low frequency noise annoyance complaints.


Author(s):  
Sophie R. Kaye ◽  
Ethan D. Casavant ◽  
Paul E. Slaboch

Abstract Attenuating low frequencies is often problematic, due to the large space required for common absorptive materials to mitigate such noise. However, natural hollow reeds are known to effectively attenuate low frequencies while occupying relatively little space compared to traditional absorptive materials. This paper discusses the effect of varied outer diameter, and outer spacing on the 200–1600 Hz acoustic absorption of additively manufactured arrays of hollow cylinders. Samples were tested in a 10 cm diameter normal incidence impedance tube such that cylinder length was oriented perpendicular to the incoming plane wave. By varying only one geometric element of each array, the absorption due to any particular parameter can be assessed individually. The tests confirmed the hypothesis that minimizing cylinder spacing and maximizing cylinder diameter resulted in increased overall absorption and produced more focused absorption peaks at specific low frequencies. Wider cylinder spacing produced a broader absorptive frequency range, despite shifting upward in frequency. Thus, manipulating these variables can specifically target absorption for low frequency noise that would otherwise disturb listeners.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1013
Author(s):  
Herbert Weitensfelder ◽  
Hubert Brueckl ◽  
Armin Satz ◽  
Dieter Suess

The spin valve principle is the most prominent sensor design among giant- (GMR) and tunneling (TMR) magnetoresistive sensors. A new sensor concept with a disk shaped free layer enables the formation of a flux-closed vortex magnetization state if a certain relation of thickness to diameter is given. The low frequency noise of current-in-plane GMR sensing elements with different free layer thicknesses at different external field strengths has been measured. The measurements of the 1/f noise in external fields enabled a separation of magnetic and electric noise contributions. It has been shown that while the sensitivity is increasing with a decreasing element thickness, the pink noise contribution is increasing too. Still the detection limit at low frequencies is better in thinner free layer elements due to the higher sensitivity.


2011 ◽  
Vol 41 (2) ◽  
pp. 365-377 ◽  
Author(s):  
Thomas Kilpatrick ◽  
Niklas Schneider ◽  
Emanuele Di Lorenzo

Abstract The generation of variance by anomalous advection of a passive tracer in the thermocline is investigated using the example of density-compensated temperature and salinity anomalies, or spiciness. A coupled Markov model is developed in which wind stress curl forces the large-scale baroclinic ocean pressure that in turn controls the anomalous geostrophic advection of spiciness. The “double integration” of white noise atmospheric forcing by this Markov model results in a frequency (ω) spectrum of large-scale spiciness proportional to ω−4, so that spiciness variability is concentrated at low frequencies. An eddy-permitting regional model hindcast of the northeast Pacific (1950–2007) confirms that time series of large-scale spiciness variability are exceptionally smooth, with frequency spectra ∝ ω−4 for frequencies greater than 0.2 cpy. At shorter spatial scales (wavelengths less than ∼500 km), the spiciness frequency spectrum is whitened by mesoscale eddies, but this eddy-forced variability can be filtered out by spatially averaging. Large-scale and long-term measurements are needed to observe the variance of spiciness or any other passive tracer subject to anomalous advection in the thermocline.


2021 ◽  
Author(s):  
◽  
Abby Jade Burdis

<p>New Zealand’s tectonically and climatically dynamic environment generates erosion rates that outstrip global averages by up to ten times in some locations. In order to assess recent changes in erosion rate, and also to predict future erosion dynamics, it is important to quantify long-term, background erosion. Current research on erosion in New Zealand predominantly covers short-term (100 yrs) erosion dynamics and Myr dynamics from thermochronological proxy data. Without competent medium-term denudation data for New Zealand, it is uncertain which variables (climate, anthropogenic disturbance of the landscape, tectonic uplift, lithological, or geomorphic characteristics) exert the dominant control on denudation in New Zealand. Spatially-averaged cosmogenic nuclide analysis can effectively offer this information by providing averaged rates of denudation on millennial timescales without the biases and limitations of short-term erosion methods.  Basin-averaged denudation rates were obtained in the Nelson/Tasman region, New Zealand, from analysis of concentrations of meteoric ¹⁰Be in silt and in-situ produced ¹⁰Be in quartz. The measured denudation rates integrate over ~2750 yrs (in-situ) and ~1200 yrs (meteoric). Not only do the ¹⁰Be records produce erosion rates that are remarkably consistent with each other, but they are also independent of topographic metrics. Denudation rates range from ~112 – 298 t km⁻² yr⁻¹, with the exception of one basin which is eroding at 600 - 800 t km⁻² yr⁻¹. The homogeneity of rates and absence of a significant correlation with geomorphic or lithological characteristics could indicate that the Nelson/Tasman landscape is in (or approaching) a topographic steady state.  Millennial term (¹⁰Be-derived) denudation rates are more rapid than those inferred from other conventional methods in the same region (~50 – 200 t km⁻² yr⁻¹). This is likely the result of the significant contribution of low frequency, high magnitude erosive events to overall erosion of the region. Both in-situ and meteoric ¹⁰Be analyses have the potential to provide competent millennial term estimates of natural background rates of erosion. This will allow for the assessment of geomorphic-scale impacts such as topography, tectonics, climate, and lithology on rates of denudation for the country where many conventional methods do not. Cosmogenic nuclides offer the ability to understand the response of the landscape to these factors in order to make confident erosion predictions for the future.</p>


1987 ◽  
Vol 6 (4) ◽  
pp. 167-174 ◽  
Author(s):  
Jukka Starck ◽  
Jussi Pekkarinen ◽  
Seppo Aatola

The standard test for hearing protectors cannot be applied to determine the attenuation values for low frequency noise or for noise consisting of high intensity impulses. Moreover, the aging of earmuffs and the use of spectacles may cause leakage which decreases attenuation mainly at low frequencies. To study the real attenuation of earmuffs, noise measurements were taken outside and inside the earmuffs of workers at industrial work places, and of military conscripts when shooting with different firearms. The effect of spectacles on the attenuation was measured under laboratory conditions. In industrial workplaces the average attenuation was 4 dB in the 63 and 125 Hz octave bands. For shooting noise the attenuation was found to be good for small calibre weapons but poor for large calibre weapons, which generate very high peak level impulses at low frequencies. Spectacles decreased earmuff attenuation by 9–11 dB.


2019 ◽  
Vol 9 (6) ◽  
pp. 1059 ◽  
Author(s):  
Anna Chraponska ◽  
Stanislaw Wrona ◽  
Jaroslaw Rzepecki ◽  
Krzysztof Mazur ◽  
Marek Pawelczyk

Electric appliances used in workplaces and everyday life often generate a low-frequency noise, which affects human body systems. Passive methods employed to reduce noise are not effective at low frequencies. The classical approach to active noise control practically involves the generation of local zones of quiet, whereas at other areas the noise is reinforced. Moreover, it usually requires a large number of secondary sound sources. Hence, an active casing approach has been developed. The active casing panels’ vibrations are controlled to reduce the device noise emission. Efficiency of this method has been previously confirmed by the authors and the results have been reported in multiple journal publications. However, in the previous research experiments, the active casing was placed at a distance from the enclosure walls. In this research, the active casing is located in a corner and such placement is intentionally used to facilitate the active control system’s operation. The noise reduction performance is investigated at multiple configurations, including a range of distances from the corner and different error microphone arrangements. The analysis of both primary and secondary paths is given. Advantages and drawbacks of different active casing configurations are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document