scholarly journals Kinetics of Mixed Adsorbent Systems in Gas–Solid Adsorption

2003 ◽  
Vol 21 (1) ◽  
pp. 9-34 ◽  
Author(s):  
Paul A. Webley ◽  
Richard S. Todd

Mixtures of solid adsorbents often occur in the process industries through either accident or design. To model such systems, a common approach is to define a pseudo-adsorbent with equilibrium properties equal to the mass fraction weighted average of the components in the mixture. The selection of an appropriate mass-transfer rate constant for the mixture is, however, more complicated. In this study, we have derived simple relationships between the linear driving force rate constants for a pseudo-mixture in terms of the rate constants, equilibrium parameters and mass fractions of the components of the mixture. The reciprocal rate constant for a mixture of adsorbents was shown to be related to the mass fraction weighted average reciprocal rates of the components of the mixture for the case of equal equilibrium isotherms. Expressions of greater complexity resulted for non-linear and non-equal isotherms. Experimental testing was undertaken of the breakthrough behaviour in adsorbent mixtures using the air system with mixtures of CaX and NaX in an adiabatic packed column. The mass-transfer behaviour of the solid mixtures was in good agreement with that predicted by the simple models.

2018 ◽  
Vol 3 (2) ◽  
pp. 75-87
Author(s):  
Faraliana binti Md Dan ◽  
◽  
Nazlina binti Zulbadli ◽  

This project focused on the extraction of peanut oil by using Soxhlet extraction. The main objective of this research is to determine the optimum condition for the Soxhlet extraction process in order to produce the highest extraction yields. Apart from that, this research is also to study about the mass transfer rate and kinetic to obtain the suitable diffusion coefficient and rate constant based on Fick’s law and kinetic studies. The experiments were conducted with few manipulated variables which are particle sizes, solvent to solid ratio and extraction contact time. The optimum condition for the peanut oil extraction was found at 0.6 mm of particle size, 15:1 solid to solvent ratio with an extraction time of 8 hours. Besides, the calculated effective diffusivity is 4.3258 x 10-14 m2/s. The extraction rate constant, k was found increase when the ratio of solvent to solid ratio increase due to higher amount of solvent facilitates the extraction process.


2018 ◽  
Vol 7 (1) ◽  
pp. 710
Author(s):  
Danu Ariono ◽  
Dwiwahju Sasongko ◽  
Priyono Kusumo

To date, evaluation of the performance of liquid-liquid extraction in packed columns has not been able to produce satisfactory results, because the correlations used in this evaluation are empirical in nature, with a very limited range of validity. One of the causes of this limitation is the use of the assumption that the dynamics of liquid dispersed in droplets is constant (in terms of shape, dimensions, and numbers), so that the mass transfer interfacial area and mass transfer coefficient in the column are assumed to be constant. In reality, dynamics of droplets in a column is not constant, due to the imbalance between droplet coalescence and disintegration. For a given droplet diameter, there is an increase in numbers of droplets due to coalescence of smaller droplets, and a  decrease in numbers of droplets due to disintegration into smaller droplets. These coalescence and disintegration phenomena may be caused by various factors, including the existence of packings which impede the flow of droplets. These phenomena impact the mass transfer rate from continuous to dispersed phase, and vice versa, due to a variation in the interfacial contact area and mass transfer coefficient. The observation of droplet dynamics from droplet formation until its motion through void spaces between packings is a critical factor in developing a model that can describe the performance of the packed column. The dynamics of droplets is influenced by various operational and physical variables.  A droplet dynamics experiment has been undertaken, aimed at obtaining the droplet size distribution at specific heights along the column. This distribution is to be used to develop mass transfer coefficient correlations in the continuous and dispersed phases.Keywords: droplet size distribution, packed column Abstrak Evaluasi unjuk kerja ekstraksi cair-cair dalam kolom isian (packed column) hingga saat ini belum dapat memberikan hasil yang memuaskan karena korelasi-korelasi yang  digunakan  masih  bersifat  empiris serta daerah keberlakuannya sangat terbatas. Salah satu penyebab keterbatasan berlakunya korelasi tersebut ialah penggunaan anggapan bahwa dinamika cairan yang terdispersi dalam bentuk tetesan bersifat konstan (bentuk, ukuran serta jumlahnya), sehingga harga luas perpindahan massa dan harga koefisien perpindahan massa dalam kolom dianggap tetap. Kenyataannya dinamika tetesan dalam kolom tidak konstan akibat adanya tetesan yang bergabung dan pecah dalam jumlah yang  tidak sama. Pada suatu harga diameter tetesan tertentu, ada penambahan jumlah tetesan akibat penggabungan tetesan­ tetesan yang ukurannya lebih kecil serta adanya pengurangan jumlah tetesan akibat pecahnya tetesan menjadi tetesan-tetesan yang lebih kecil. Peristiwa penggabungan dan pemecahan tetesan dapat disebabkan berbagai faktor temasuk adanya isian yang menghalangi gerakan tetesan. Kejadian tersebut akan mempengaruhi laju proses perpindahan massa dari fasa kontinyu ke fasa  terdispersi  atau sebaliknya, karena adanya variasi luas permukaan kontak serta koefisien perpindahan massanya. Pengamatan dinamika tetesan mulai saat pembentukan tetes hingga pergerakannya saat melewati sela-sela isian merupakan faktor penting dalam  membangun model  yang  dapat menggambarkan unjuk kerja kolom isian. Dinamika tetesan tersebut dipengaruhi oleh berbagai variabel operasi dan variabel fisik. Eksperimen dinamika fetes yang dilakukan diarahkan untuk memperoleh distribusi ukuran tetes pada posisi ketinggian tertentu dan distribusi tersebut akan digunakan untuk pengembangan  korelasi koefisien perpindahan massa difasa  dispersi danfasa kontinyu.Kata kunci: distribusi ukuran tetes, kolom isian.


2020 ◽  
Vol 156 ◽  
pp. 106521
Author(s):  
Amir Eskanlou ◽  
Qingqing Huang ◽  
Mohsen Hemmati Chegeni ◽  
Mohammad Reza Khalesi ◽  
Mahmoud Abdollahy

2016 ◽  
Vol 37 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Magdalena Olak-Kucharczyk ◽  
Stanisław Ledakowicz

Abstract Ozonation is a heterogeneous process of chemical absorption often controlled by a gas-liquid mass transfer rate. This paper presents the results of kinetics in a reaction between phenylphenol isomers and ozone. The degradation of phenylphenol isomers during ozonation proceeds quite fast. In order to avoid the influence of mass transfer limitation the kinetics experiments were conducted in a homogenous liquid-liquid system. The second-order rate constants were determined using classical and competition methods, which are especially recommended for fast reactions. The determined rate constants at pH 2 using the two different methods are almost the same. The increase of pH causes an increase of rate constants for the reaction of phenylphenol isomers with ozone.


2020 ◽  
Author(s):  
Adlai Katzenberg ◽  
Debdyuti Mukherjee ◽  
Peter J. Dudenas ◽  
Yoshiyuki Okamoto ◽  
Ahmet Kusoglu ◽  
...  

<p>Limitations in fuel cell electrode performance have motivated the development of ion-conducting binders (ionomers) with high gas permeability. Such ionomers have been achieved by copolymerization of perfluorinated sulfonic acid (PFSA) monomers with bulky and asymmetric monomers, leading to a glassy ionomer matrix with chemical and mechanical properties that differ substantially from common PFSA ionomers (e.g., Nafion™). In this study, we use perfluorodioxolane-based ionomers to provide fundamental insights into the role of the matrix chemical structure on the dynamics of structural and transport processes in ion-conducting polymers. Through <i>in-situ</i> water uptake measurements, we demonstrate that ionomer water sorption kinetics depend strongly on the properties and mass fraction of the matrix. As the PFSA mass fraction was increased from 0.26 to 0.57, the Fickian swelling rate constant decreased from 0.8 s<sup>-1</sup> to 0.2 s<sup>-1</sup>, while the relaxation rate constant increased from 3.1×10<sup>-3</sup> s<sup>-1</sup> to 4.0×10<sup>-3</sup>. The true swelling rate, in nm s<sup>-1</sup>, was determined by the chemical nature of the matrix; all dioxolane-containing materials exhibited swelling rates ~1.5 - 2 nm s<sup>-1</sup> compared to ~3 nm s<sup>-1</sup> for Nafion. Likewise, Nafion underwent relaxation at twice the rate of the fastest-relaxing dioxolane ionomer. Reduced swelling and relaxation kinetics are due to limited matrix segmental mobility of the dioxolane-containing ionomers. We demonstrate that changes in conductivity are strongly tied to the polymer relaxation, revealing the decoupled roles of initial swelling and relaxation on hydration, nanostructure, and ion transport in perfluorinated ionomers. </p>


2020 ◽  
Vol 86 (12) ◽  
pp. 15-22
Author(s):  
N. A. Bulayev ◽  
E. V. Chukhlantseva ◽  
O. V. Starovoytova ◽  
A. A. Tarasenko

The content of uranium and plutonium is the main characteristic of mixed uranium-plutonium oxide fuel, which is strictly controlled and has a very narrow range of the permissible values. We focused on developing a technique for measuring mass fractions of uranium and plutonium by controlled potential coulometry using a coulometric unit UPK-19 in set with a R-40Kh potentiostat-galvanostat. Under conditions of sealed enclosures, a special design of the support stand which minimized the effect of fluctuations in ambient conditions on the signal stability was developed. Optimal conditions for coulometric determination of plutonium and uranium mass fractions were specified. The sulfuric acid solution with a molar concentration of 0.5 mol/dm3 was used as a medium. Lead ions were introduced into the background electrolyte to decrease the minimum voltage of hydrogen reduction to –190 mV. The addition of aluminum nitride reduced the effect of fluoride ions participating as a catalyst in dissolving MOX fuel samples, and the interfering effect of nitrite ions was eliminated by introducing a sulfamic acid solution into the cell. The total content of uranium and plutonium was determined by evaluation of the amount of electricity consumed at the stage of uranium and plutonium co-oxidation. Plutonium content was measured at the potentials, at which uranium remains in the stable state, which makes it possible to subtract the contribution of plutonium oxidation current from the total oxidation current. The error characteristics of the developed measurement technique were evaluated using the standard sample method and the real MOX fuel pellets. The error limits match the requirements set out in the specifications for MOX fuel. The technique for measuring mass fractions of uranium and plutonium in uranium-plutonium oxide nuclear fuel was certified. The relative measurement error of the mass fraction of plutonium and uranium was ±0.0070 and ±0.0095, respectively. The relative error of the ratio of the plutonium mass fraction to the sum of mass fractions of uranium and plutonium was ±0.0085.


1998 ◽  
Vol 38 (6) ◽  
pp. 287-294 ◽  
Author(s):  
Pen-C. Chiang ◽  
Chung-H. Hung ◽  
J. C. Mar ◽  
E. E. Chang

Both Henry's constants and volumetric mass transfer coefficients (KLa) of eight priority chlorinated organic compounds including 1,1-dichloroethene, methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,4-dichlorobenzene in an air stripping packed column were investigated in this study. The liquid and gas phase EPICS (Equilibrium Partition in Closed System) and direct calculating methods were applied to determine the Henry's constants of VOCs. The interference of co-solute on Henry's constants was also investigated. Experimental results indicated that decrease in Henry's constants of VOCs was observed in the presence of humic acid but no apparent effect on Henry's constants was detected when there was NaCl and surfactant in solution. Four different configurations of packing media including Intalox Saddle, Super Intalox Saddle, Telleret, and Hedgehog made of polypropylene were respectively packed in the air stripping tower and investigated in the study. The dependence of hydraulic loading, air-water ratio, and configurations of packing media on mass transfer coefficients of VOCs was discussed.


1983 ◽  
Vol 48 (5) ◽  
pp. 1358-1367 ◽  
Author(s):  
Antonín Tockstein ◽  
František Skopal

A method for constructing curves is proposed that are linear in a wide region and from whose slopes it is possible to determine the rate constant, if a parameter, θ, is calculated numerically from a rapidly converging recurrent formula or from its explicit form. The values of rate constants and parameter θ thus simply found are compared with those found by an optimization algorithm on a computer; the deviations do not exceed ±10%.


Sign in / Sign up

Export Citation Format

Share Document