Deletion of MCD4 involved in glycosylphosphatidylinositol (GPI) anchor synthesis leads to an increase in β-1,6-glucan level and a decrease in GPI-anchored protein and mannan levels in the cell wall of Saccharomyces cerevisiae

2005 ◽  
Vol 99 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Jaruwan Maneesri ◽  
Masayuki Azuma ◽  
Yumiko Sakai ◽  
Koichi Igarashi ◽  
Takeshi Matsumoto ◽  
...  
1995 ◽  
Vol 128 (3) ◽  
pp. 333-340 ◽  
Author(s):  
C F Lu ◽  
R C Montijn ◽  
J L Brown ◽  
F Klis ◽  
J Kurjan ◽  
...  

The cell adhesion protein alpha-agglutinin is bound to the outer surface of the Saccharomyces cerevisiae cell wall and mediates cell-cell contact in mating. alpha-Agglutinin is modified by addition of a glycosyl phosphatidylinositol (GPI) anchor as it traverses the secretory pathway. The presence of a GPI anchor is essential for cross-linking into the wall, but the fatty acid and inositol components of the anchor are lost before cell wall association (Lu, C.-F., J. Kurjan, and P. N. Lipke, 1994. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol. Cell. Biol. 14:4825-4833). Cell wall association of alpha-agglutinin was accompanied by an increase in size and a gain in reactivity to antibodies directed against beta 1,6-glucan. Several kre mutants, which have defects in synthesis of cell wall beta 1,6-glucan, had reduced molecular size of cell wall alpha-agglutinin. These findings demonstrate that the cell wall form of alpha-agglutinin is covalently associated with beta 1,6-glucan. The alpha-agglutinin biosynthetic precursors did not react with antibody to beta 1,6-glucan, and the sizes of these forms were unaffected in kre mutants. A COOH-terminal truncated form of alpha-agglutinin, which is not GPI anchored and is secreted into the medium, did not react with the anti-beta 1,6-glucan. We propose that extracellular cross-linkage to beta 1,6-glucan mediates covalent association of alpha-agglutinin with the cell wall in a manner that is dependent on prior addition of a GPI anchor to alpha-agglutinin.


1994 ◽  
Vol 14 (7) ◽  
pp. 4825-4833 ◽  
Author(s):  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

Saccharomyces cerevisiae alpha-agglutinin is a cell wall-anchored adhesion glycoprotein. The previously identified 140-kDa form, which contains a glycosyl-phosphatidylinositol (GPI) anchor (D. Wojciechowicz, C.-F. Lu, J. Kurjan, and P. N. Lipke, Mol. Cell. Biol. 13:2554-2563, 1993), and additional forms of 80, 150, 250 to 300, and > 300 kDa had the properties of intermediates in a transport and cell wall anchorage pathway. N glycosylation and additional modifications resulted in successive increases in size during transport. The 150- and 250- to 300-kDa forms were membrane associated and are likely to be intermediates between the 140-kDa form and a cell surface GPI-anchored form of > 300 kDa. A soluble form of > 300 kDa that lacked the GPI anchor had properties of a periplasmic intermediate between the plasma membrane form and the > 300-kDa cell wall-anchored form. These results constitute experimental support for the hypothesis that GPI anchors act to localize alpha-agglutinin to the plasma membrane and that cell wall anchorage involves release from the GPI anchor to produce a periplasmic intermediate followed by linkage to the cell wall.


1994 ◽  
Vol 14 (7) ◽  
pp. 4825-4833
Author(s):  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

Saccharomyces cerevisiae alpha-agglutinin is a cell wall-anchored adhesion glycoprotein. The previously identified 140-kDa form, which contains a glycosyl-phosphatidylinositol (GPI) anchor (D. Wojciechowicz, C.-F. Lu, J. Kurjan, and P. N. Lipke, Mol. Cell. Biol. 13:2554-2563, 1993), and additional forms of 80, 150, 250 to 300, and > 300 kDa had the properties of intermediates in a transport and cell wall anchorage pathway. N glycosylation and additional modifications resulted in successive increases in size during transport. The 150- and 250- to 300-kDa forms were membrane associated and are likely to be intermediates between the 140-kDa form and a cell surface GPI-anchored form of > 300 kDa. A soluble form of > 300 kDa that lacked the GPI anchor had properties of a periplasmic intermediate between the plasma membrane form and the > 300-kDa cell wall-anchored form. These results constitute experimental support for the hypothesis that GPI anchors act to localize alpha-agglutinin to the plasma membrane and that cell wall anchorage involves release from the GPI anchor to produce a periplasmic intermediate followed by linkage to the cell wall.


Author(s):  
Gerrit J. P. Dijkgraaf ◽  
Huijuan Li ◽  
Howard Bussey

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Sun ◽  
Jae Won Lee ◽  
Sangdo Yook ◽  
Stephan Lane ◽  
Ziqiao Sun ◽  
...  

AbstractPlant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass.


Micron ◽  
2021 ◽  
pp. 103091
Author(s):  
Raissa D. Moura ◽  
Lauanda M. Carvalho ◽  
Brígida A.A. Spagnol ◽  
Tarcio Carneiro ◽  
Ane Catarine Tosi Costa ◽  
...  

2004 ◽  
Vol 48 (10) ◽  
pp. 3871-3876 ◽  
Author(s):  
Sarit Markovich ◽  
Aya Yekutiel ◽  
Itamar Shalit ◽  
Yona Shadkchan ◽  
Nir Osherov

ABSTRACT The antifungal agent caspofungin (CAS) specifically interferes with glucan synthesis and cell wall formation. To further study the cellular processes affected by CAS, we analyzed a Saccharomyces cerevisiae mutant collection (4,787 individual knockout mutations) to identify new genes affecting susceptibility to the drug. This collection was screened for increased CAS sensitivity (CAS-IS) or increased CAS resistance (CAS-IR). MICs were determined by the broth microdilution method. Disruption of 20 genes led to CAS-IS (four- to eightfold reductions in the MIC). Eleven of the 20 genes are involved in cell wall and membrane function, notably in the protein kinase C (PKC) integrity pathway (MID2, FKS1, SMI1, and BCK1), chitin and mannan biosynthesis (CHS3, CHS4, CHS7, and MNN10), and ergosterol biosynthesis (ERG5 and ERG6). Four of the 20 genes (TPO1, VPS65, VPS25, and CHC1) are involved in vacuole and transport functions, 3 of the 20 genes (CCR4, POP2, and NPL3) are involved in the control of transcription, and 2 of the 20 genes are of unknown function. Disruption of nine additional genes led to CAS-IR (a fourfold increase of MIC). Five of these nine genes (SLG1, ERG3, VRP1, CSG2, and CKA2) are involved in cell wall function and signal transduction, and two of the nine genes (VPS67 and SAC2) are involved in vacuole function. To assess the specificity of susceptibility to CAS, the MICs of amphotericin B, fluconazole, flucytosine, and calcofluor for the strains were tested. Seven of 20 CAS-IS strains (with disruption of FKS1, SMI1, BCK1, CHS4, ERG5, TPO1, and ILM1) and 1 of 9 CAS-IR strains (with disruption of SLG1) demonstrated selective susceptibility to CAS. To further explore the importance of PKC in CAS susceptibility, the activity of the PKC inhibitor staurosporine in combination with CAS was tested against eight Aspergillus clinical isolates by the microdilution assay. Synergistic or synergistic-to-additive activities were found against all eight isolates by use of both MIC and minimum effective concentration endpoints.


2003 ◽  
Vol 50 (s1) ◽  
pp. 676-677 ◽  
Author(s):  
PAWAN K. VOHRA ◽  
THEODORE J. KOTTOM ◽  
ANDREW H. LIMPER ◽  
CHARLES F. THOMAS

2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


Sign in / Sign up

Export Citation Format

Share Document