scholarly journals Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap

Dendrobiology ◽  
2014 ◽  
Vol 72 ◽  
pp. 139-150 ◽  
Author(s):  
Andrzej M. Jagodziński ◽  
Izabela Kałucka ◽  
Paweł Horodecki ◽  
Jacek Oleksyn
Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 765
Author(s):  
Bogdan Wertz ◽  
Mariusz Bembenek ◽  
Zbigniew Karaszewski ◽  
Wojciech Ochał ◽  
Maciej Skorupski ◽  
...  

Stand density changes due to aging and thinning interventions. At the same time, the social status of trees develops and varies due to different genetic conditions as well as access to nutrients and light. Trees growing in diverse conditions gain their social status in the stand, which, in the end, influences their development and biomass allocation. The objective of this research was to discover if stand density or tree social status has an impact on a tree’s aboveground biomass allocation. The study was carried out in five premature and five mature pine stands, growing in the same soil conditions. The selected sample stands had a different growing density, from low to high. In each sample stand, 10 trees were selected to represent a different social status, according to the Schädelin classification. There were 100 trees felled in total (50 in the premature stands and 50 in the mature stands), for which the dry biomass of the stem, living and dead branches, needles, and cones was determined. The results showed that stand density only had an impact on the branches’ biomass fraction but not the stem and foliage fractions, while social status had an impact on all the fractions. Dominant and codominant trees, as well as those with developed crowns, had a smaller share of the stem and higher share of branches in comparison with trees of a lower social status.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 234
Author(s):  
Linda Flade ◽  
Christopher Hopkinson ◽  
Laura Chasmer

In this follow-on study on aboveground biomass of shrubs and short-stature trees, we provide plant component aboveground biomass (herein ‘AGB’) as well as plant component AGB allometric models for five common boreal shrub and four common boreal short-stature tree genera/species. The analyzed plant components consist of stem, branch, and leaf organs. We found similar ratios of component biomass to total AGB for stems, branches, and leaves amongst shrubs and deciduous tree genera/species across the southern Northwest Territories, while the evergreen Picea genus differed in the biomass allocation to aboveground plant organs compared to the deciduous genera/species. Shrub component AGB allometric models were derived using the three-dimensional variable volume as predictor, determined as the sum of line-intercept cover, upper foliage width, and maximum height above ground. Tree component AGB was modeled using the cross-sectional area of the stem diameter as predictor variable, measured at 0.30 m along the stem length. For shrub component AGB, we achieved better model fits for stem biomass (60.33 g ≤ RMSE ≤ 163.59 g; 0.651 ≤ R2 ≤ 0.885) compared to leaf biomass (12.62 g ≤ RMSE ≤ 35.04 g; 0.380 ≤ R2 ≤ 0.735), as has been reported by others. For short-stature trees, leaf biomass predictions resulted in similar model fits (18.21 g ≤ RMSE ≤ 70.0 g; 0.702 ≤ R2 ≤ 0.882) compared to branch biomass (6.88 g ≤ RMSE ≤ 45.08 g; 0.736 ≤ R2 ≤ 0.923) and only slightly better model fits for stem biomass (30.87 g ≤ RMSE ≤ 11.72 g; 0.887 ≤ R2 ≤ 0.960), which suggests that leaf AGB of short-stature trees (<4.5 m) can be more accurately predicted using cross-sectional area as opposed to diameter at breast height for tall-stature trees. Our multi-species shrub and short-stature tree allometric models showed promising results for predicting plant component AGB, which can be utilized for remote sensing applications where plant functional types cannot always be distinguished. This study provides critical information on plant AGB allocation as well as component AGB modeling, required for understanding boreal AGB and aboveground carbon pools within the dynamic and rapidly changing Taiga Plains and Taiga Shield ecozones. In addition, the structural information and component AGB equations are important for integrating shrubs and short-stature tree AGB into carbon accounting strategies in order to improve our understanding of the rapidly changing boreal ecosystem function.


2019 ◽  
Vol 65 (3-4) ◽  
pp. 166-179 ◽  
Author(s):  
Vladimir A. Usoltsev ◽  
Katarína Merganičová ◽  
Bohdan Konôpka ◽  
Anna A. Osmirko ◽  
Ivan S. Tsepordey ◽  
...  

Abstract Climate change, especially modified courses of temperature and precipitation, has a significant impact on forest functioning and productivity. Moreover, some alterations in tree biomass allocation (e.g. root to shoot ratio, foliage to wood parts) might be expected in these changing ecological conditions. Therefore, we attempted to model fir stand biomass (t ha−1) along the trans-Eurasian hydrothermal gradients using the data from 272 forest stands. The model outputs suggested that all biomass components, except for the crown mass, change in a common pattern, but in different ratios. Specifically, in the range of mean January temperature and precipitation of −30°C to +10°C and 300 to 900 mm, fir stand biomass increases with both increasing temperature and precipitation. Under an assumed increase of January temperature by 1°C, biomass of roots and of all components of the aboveground biomass of fir stands increased (under the assumption that the precipitation level did not change). Similarly, an assumed increase in precipitation by 100 mm resulted in the increased biomass of roots and of all aboveground components. We conclude that fir seems to be a perspective taxon from the point of its productive properties in the ongoing process of climate change.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 41 ◽  
Author(s):  
Bin Yang ◽  
Wenyan Xue ◽  
Shichuan Yu ◽  
Jianyun Zhou ◽  
Wenhui Zhang

We studied the effects of stand age on allocation and equation fitting of aboveground and below-ground biomass in four Quercus acutissima stands (14, 31, 46, and 63 years old) in the Central Loess Plateau of China. The stem wood, stem bark, branch, foliage, and belowground biomass of each of the 20 destructive harvesting trees were quantified. The mean total biomass of each tree was 28.8, 106.8, 380.6, and 603.4 kg/tree in the 14-, 31-, 46-, and 63-year-old stands, respectively. Aboveground biomass accounted for 72.25%, 73.05%, 76.14%, and 80.37% of the total tree biomass in the 14-, 31-, 46-, and 63-year-old stands, respectively, and stem wood was the major component of tree biomass. The proportion of stem (with bark) biomass to total tree biomass increased with stand age while the proportions of branch, foliage, and belowground biomass to total tree biomass decreased with stand age. The ratio of belowground biomass to aboveground biomass decreased from 0.39 in the 14-year-old stand to 0.37, 0.31, and 0.24 in the 31-, 46-, and 63-year-old stands, respectively. Age-specific biomass equations in each stand were developed for stem wood, stem bark, aboveground, and total tree. The inclusion of tree height as a second variable improved the total tree biomass equation fitting for middle-aged (31-year-old and 46-year-old) stands but not young (14 years old) and mature (63 years old) stands. Moreover, biomass conversion and expansion factors (BCEFs) varied with stand age, showing a decreasing trend with increasing stand age. These results indicate that stand age alters the biomass allocation of Q. acutissima and results in age-specific allometric biomass equations and BCEFs. Therefore, to obtain accurate estimates of Q. acutissima forest biomass and carbon stocks, age-specific changes need to be considered.


2007 ◽  
Vol 9 (4) ◽  
pp. 293-304 ◽  
Author(s):  
C. J. Gandy ◽  
P. L. Younger

A physically based contaminant transport model, POTOMAC (Pyrite Oxidation products Transport: Object-oriented Model for Abandoned Colliery sites), has been developed to simulate the pyrite oxidation process in mine spoil heaps and the subsequent transport of the reaction products. This is believed to represent the first particle tracking model created using object-oriented technology and has proved capable of simulating the large time scales (on the order of centuries) required for this application. The model conceptualises a spoil heap as a series of ‘columns’, each representing a portion of the unsaturated zone, where active weathering and precipitation of secondary minerals takes place. The columns are then connected to a saturated zone, beneath the water table, where the contaminants are transported to the heap discharge. A form of particle tracking, the ‘random walk method’, is used to transport both the oxidant, oxygen, and the products, ferrous iron and sulfate. The subsequent oxidation of ferrous iron and precipitation of ferric oxyhydroxide is incorporated to provide an iron ‘sink’, where iron is effectively removed from the transport process. The application of POTOMAC to a case study, the Morrison Busty spoil heap in County Durham, UK, has produced encouraging results.


Sign in / Sign up

Export Citation Format

Share Document