The Solution Research of Complex and Restricted Structure with Total Focusing Method Ultrasonic Technology

2021 ◽  
Vol 11 (01) ◽  
pp. 53-61
Author(s):  
若谷 彭
2011 ◽  
Vol 396-398 ◽  
pp. 292-296
Author(s):  
Ai Shi Zhu

Ultrasonic technology was applied to polysaccharides extraction from Ottelia acuminata (Gagnep.) Dandy and Response Surface Methodology (RSM) was used to optimize the effects of processing parameters on polysaccharides yields. Three independent variables such as liquid-solid ratio (ml/g, X1), extraction temperature (°C, X2) and extraction time (hour, X3) were investigated respectively. The statistical analysis indicated that the three variables and the quadratic of X1 and X3 had significant effects on the yields and followed by the significant interaction effects between the variables of X1 and X3, X2 and X3 (p<0.05). A mathematical model with high determination coefficient was gained. The optimal extraction conditions of polysaccharides were determined as follows: liquid-solid ratio 43 ml/g, extraction temperature 90 °C and extraction time 3.45 hours. Under these conditions, the experimental yield of polysaccharides was 107.44 mg/g, which was agreed closely with the predicted value 108.71 mg/g.


Author(s):  
Matthew Blyth ◽  
◽  
Naoki Sakiyama ◽  
Hiroshi Hori ◽  
Hiroaki Yamamoto ◽  
...  

A new logging-while-drilling (LWD) acoustic tool has been developed with novel ultrasonic pitch-catch and pulse-echo technologies. The tool enables both high-resolution slowness and reflectivity images, which cannot be addressed with conventional acoustic logging. Measuring formation elastic-wave properties in complex, finely layered formations is routinely attempted with sonic tools that measure slowness over a receiver array with a length of 2 ft or more depending upon the tool design. These apertures lead to processing results with similar vertical resolutions, obscuring the true slowness of any layering occurring at a finer scale. If any of these layers present significantly different elastic-wave properties than the surrounding rock, then they can play a major role in both wellbore stability and hydraulic fracturing but can be absent from geomechanical models built on routine sonic measurements. Conventional sonic tools operate in the 0.1- to 20-kHz frequency range and can deliver slowness information with approximately 1 ft or more depth of investigation. This is sufficient to investigate the far-field slowness values but makes it very challenging to evaluate the near-wellbore region where tectonic stress redistribution causes pronounced azimuthal slowness variation. This stress-induced slowness variation is important because it is also a key driver of wellbore geomechanics. Moreover, in the presence of highly laminated formations, there can be a significant azimuthal variation of slowness due to layering that is often beyond the resolution of conventional sonic tools due to their operating frequency. Finally, in horizontal wells, multiple layer slownesses are being measured simultaneously because of the depth of investigation of conventional sonic tools. This can cause significant interpretational challenges. To address these challenges, an entirely new design approach was needed. The novel pitch-catch technology operates over a wide frequency range centered at 250 kHz and contains an array of receivers having a 2-in. receiver aperture. The use of dual ultrasonic technology allows the measurement of high-resolution slowness data azimuthally as well as reflectivity and caliper images. The new LWD tool was run in both vertical and horizontal wells and directly compared with both wireline sonic and imaging tools. The inch-scale slownesses obtained show characteristic features that clearly correlate to the formation lithology and structure indicated by the images. These features are completely absent from the conventional sonic data due to its comparatively lower vertical resolution. Slowness images from the tool reflect the formation elastic-wave properties at a fine scale and show dips and lithological variations that are complementary to the data from the pulse-echo images. The physics of the measurement are discussed, along with its ability to measure near-wellbore slowness, elastic-wave properties, and stress variations. Additionally, the effect of the stress-induced, near-wellbore features seen in the slowness images and the pulse-echo images is discussed with the wireline dipole shear anisotropy processing.


Author(s):  
Mahmood Amani ◽  
Idris M ◽  
Abdul Ghani M ◽  
Dela Rosa N ◽  
Carvero A ◽  
...  

Engineering ◽  
2014 ◽  
Vol 06 (04) ◽  
pp. 177-184 ◽  
Author(s):  
Anna Abramova ◽  
Vladimir Abramov ◽  
Vadim Bayazitov ◽  
Artyom Gerasin ◽  
Dmitriy Pashin

2017 ◽  
Vol 2 (2) ◽  
pp. 14-18
Author(s):  
Андрей Балаев ◽  
Andrey Balaev ◽  
Альберт Королев ◽  
Albert Korolev ◽  
Тимур Балтаев ◽  
...  

The paper reports the substantiation of the stabilization technology for geometrical parameters of elastic plates in pressure sensors carried out by means of residual stresses affected by ultrasonic oscillations. For the confirmation of the efficiency of the developed ultrasonic stabilization technology in accordance with the procedure described the experimental investigations are carried out. The results of the experimental study are presented by the equation of regression and diagrams of residual stresses dependences upon technological factors. Amplitudes of ultrasonic oscillations, a static force of tool pressure and machining duration were assumed as variable technological factors. High productivity and efficiency of the ultrasonic technology for elastic plate stabilization are proved experimentally. As a result of the experiment there are defined rational values of ultrasonic processing modes for specific geometrical and physical-mechanical parameters of a plate.


Sign in / Sign up

Export Citation Format

Share Document