scholarly journals Analysis on Drought-Flood Abrupt Alternation and Extreme Low Flow Change Rule in the Yichang Station of Yangtze River

2014 ◽  
Vol 03 (01) ◽  
pp. 34-40 ◽  
Author(s):  
艺璇 王
Keyword(s):  
Low Flow ◽  
Water Policy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 602-621
Author(s):  
Yifan Su ◽  
Weiming Li ◽  
Liu Liu ◽  
Jinjing Li ◽  
Xuyang Sun ◽  
...  

Abstract The health of medium and small river ecosystems is threatened by increasing hydropower development and human activities. How to properly diagnose rivers has become a global concern. As a well-accepted theory, the aquatic organism density can be an indicator of river health. A new river health assessment method based on macroinvertebrates habitat suitability curves (M-HSC) was proposed. In this study, the health of Qiaobian River (QBR), a tributary of Yangtze River, China was evaluated by investigating the distribution of macroinvertebrates, chemical and physical parameters during winter 2018 (low flow season) and summer 2019 (high flow season). Based on habitat suitability of dominant macroinvertebrates, the key habitat factors were screened by canonical correspondence analysis (CCA) and Pearson correlation analysis. Suitability curves were determined by Generalized Additive Model (GAM). Ecosystem health comprehensive index method was used to evaluate the health status. The results show most suitable conditions for Corbicula fluminea containing chemical oxygen demand (CODMn) of 1.48 mg L−1, total nitrogen (TN) of 0.27 mg L−1, dissolved oxygen (DO) of 11.17 mg L−1, pH of 8.42, turbidity of 1.76 NTU, and water depth (Dep) of 0.35 m. The health status of QBR is spatially heterogeneous with the apparently better upstream than the downstream. In general, 25, 12.5, 12.5% of the samples were classified as nature, health and sub-health status, respectively and the rest 50% were lower than sub-health. The results are consistent with the environmental quality standards for surface water in China (GB3838-2002), suggesting the applicability of macroinvertebrates habitat suitability for evaluating river health. By minimizing the temporal and spatial limitations of comprehensive evaluation method and indicator species method, this study, for the first time, used macroinvertebrates habitat suitability curves to assess the health of medium and small rivers. The study will provide new insights for future river health assessments.


2020 ◽  
Vol 12 (1) ◽  
pp. 387-402
Author(s):  
Chao Gao ◽  
Buda Su ◽  
Valentina Krysanova ◽  
Qianyu Zha ◽  
Cai Chen ◽  
...  

Abstract. The outputs of four global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5), which were statistically downscaled and bias corrected, were used to drive four hydrological models (Hydrologiska Byråns, HBV; Soil and Water Assessment Tool, SWAT; Soil and Water Integrated Model, SWIM; and Variable Infiltration Capacity, VIC) to simulate the daily discharge at the Cuntan hydrological station in the upper Yangtze River from 1861 to 2299. As the performances of hydrological models in various climate conditions could be different, the models were first calibrated in the period from 1979 to 1990. Then, the models were validated in the comparatively wet period, 1967–1978, and in the comparatively dry period, 1991–2002. A multi-objective automatic calibration programme using a univariate search technique was applied to find the optimal parameter set for each of the four hydrological models. The Nash–Sutcliffe efficiency (NSE) of daily discharge and the weighted least-squares function (WLS) of extreme discharge events, represented by high flow (Q10) and low flow (Q90), were included in the objective functions of the parameterization process. In addition, the simulated evapotranspiration results were compared with the GLEAM evapotranspiration data for the upper Yangtze River basin. For evaluating the performances of the hydrological models, the NSE, modified Kling–Gupta efficiency (KGE), ratio of the root-mean-square error to the standard deviation of the measured data (RSR) and Pearson's correlation coefficient (r) were used. The four hydrological models reach satisfactory simulation results in both the calibration and validation periods. In this study, the daily discharge is simulated for the upper Yangtze River under the preindustrial control (piControl) scenario without anthropogenic climate change from 1861 to 2299 and for the historical period 1861–2005 and for 2006 to 2299 under the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios. The long-term daily discharge dataset can be used in the international context and water management, e.g. in the framework of Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) by providing clues to what extent human-induced climate change could impact streamflow and streamflow trend in the future. The datasets are available at: https://doi.org/10.4121/uuid:8658b22a-8f98-4043-9f8f-d77684d58cbc (Gao et al., 2019).


2021 ◽  
Vol 22 (2) ◽  
pp. 200-206
Author(s):  
Liudmyla Gorbachova ◽  
Borys Khrystiuk
Keyword(s):  
Low Flow ◽  

2014 ◽  
Vol 580-583 ◽  
pp. 1953-1960
Author(s):  
Li Zhao ◽  
Qi Dong Peng ◽  
Qu Chang Chen ◽  
Chong Li ◽  
Zheng Jie Yin

For studying the impacts of the tributaries confluence on the hydrological processes in the downstream reaches of the four cascaded reservoirs in the downstream of Jinshajiang River, this paper simulated the daily discharge at the outlet of the cascaded reservoirs and along the reserve mainstream in typical years with the operation programming of the reserve and MIKE11 hydrodynamic model, and eco-hydrology indicators were selected and calculated by IHA to quantify the hydrology process. The result showed that at Xiangjiaba Gauge Station discharge on April and May increased by about 100%, the discharge in low flow year decreased by 50% and the timing of annual 1-day minimum discharge has significantly alteration. The confluence of Minjiang River could effectively mitigate the impacts of the cascaded reservoirs on eco-hydrology of the downstream of the confluence, but the mitigation of others three tributaries were not significant. Moreover the pre-flood high flow in the downstream of the Minjiang River confluence increased by 50%, and other indicators alteration were not significant.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 65 ◽  
Author(s):  
Jiaxi Tian ◽  
Juan Chang ◽  
Zengxin Zhang ◽  
Yanjun Wang ◽  
Yifan Wu ◽  
...  

Low flow is a seasonal phenomenon which is a critical requirement for utilization of water resources under rapidly changing environmental conditions. The operation of the Three Gorges Dam (TGD) has had a great influence on downstream low flow in the Yangtze River. In this paper, the characteristics of low flow in the main Yangtze River were analyzed during the dry season before and after the TGD operation during the period of 1956–2016. The results show that: (1) the operation of the TGD has changed the spatial and temporal distribution of streamflow in the middle and lower Yangtze River and the annual mean low flow has increased significantly since the TGD operation. (2) The operation of the TGD could advance the date of the start of dry season in the lower Yangtze River basin. The start dates of the dry season in the Yichang, Hankou and Datong stations were advanced by 14 days, 10 days and 9 days, respectively. (3) The minimum streamflow in the lower Yangtze River has increased notably since the TGD operation. The minimum streamflow was raised by 42.91%, 13.76% and 6.06% at the Yichang, Hankou and Datong stations, respectively. The increasing number of dams in the world might have the potential effects on downstream low flow. More attention should be paid to investigating the influence of dam construction on low flow in rivers all over the world.


Author(s):  
Danyang Gao ◽  
Ting Chen ◽  
Kebi Yang ◽  
Jiye Zhou ◽  
Tianqi Ao

Abstract The study of climate change impacts on streamflow in small-middle basins within the Upper Yangtze River Basin (UYRB) is not paid enough attention. This paper projected future streamflow changes in the Laixi River basin (LRB), a small-middle basin in the UYRB, during 2041–2100 under RCP2.6, RCP4.5 and RCP8.5 by coupling SDSM and SWAT. The results indicate that the temperature and precipitation in the LRB show a fluctuating upward trend, and the change is most severe under RCP8.5. The increase of maximum temperature is larger than that of minimum temperature. The precipitation changes in May to September are relatively greater than in other months, while temperature is the opposite. More importantly, the streamflow is projected to rise gradually during the whole period. Under RCP2.6, increases of streamflow in the 2050s are greater than in the 2080s, while it is the opposite under RCP4.5 and RCP8.5. The increase in high flow from May to August is expected to be significantly higher than the low flow from September to April. Although the study is focused on the LRB, the results gained can provide a reference for other small-middle basins in the UYRB and all basins experiencing subtropical monsoon humid climate.


2019 ◽  
Author(s):  
Chao Gao ◽  
Buda Su ◽  
Valentina Krysanova ◽  
Qianyu Zha ◽  
Cai Chen ◽  
...  

Abstract. The outputs of four Global Climate Models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5), which were statistically downscaled and bias corrected, were used to drive four hydrological models (HBV, SWAT, SWIM and VIC) to simulate the daily discharge at the Cuntan hydrological station in the upper Yangtze River from 1861 to 2299. As the performances of hydrological models in various climate conditions could be different, the models were first calibrated in the period from 1979 to 1990. Then, the models were validated in the wet period, 1967–1978, and in the dry period, 1991–2002. A multi-objective automatic calibration programme using a univariate search technique was applied to find the optimal parameter sets for each of the four hydrological models. The Nash-Sutcliffe efficiency (NSE) of daily discharge and the weighted least squares function (WLS) of extreme discharge events, represented by high flow (Q10) and low flow (Q90), were included in the objective functions of the parameterization process. In addition, the simulated evapotranspiration results were compared with evapotranspiration data from the GLEAM project for the upper Yangtze basin. For evaluating the performances of the hydrological models, the NSE, modified Kling-Gupta efficiency (KGE), ratio of the root mean square error to the standard deviation of the measured data (RSR) and Pearson's correlation coefficient (r) were used. The four hydrological models showed good performance in the calibration and validation periods. In this study, the daily runoff was simulated for the upper Yangtze River under the preindustrial control (piControl) scenario without anthropogenic climate change, from 1861–2299, for the historical period 1861–2005, and under the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios in the period from 2006 to 2299. The long-term daily discharge datasets for the upper Yangtze River provide streamflow trends in the future and clues regarding to what extent human-induced climate change could impact streamflow. The datasets are available at the https://doi.org/10.4121/uuid:8658b22a-8f98-4043-9f8f-d77684d58cbc website.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1552 ◽  
Author(s):  
Bing Gao ◽  
Jie Li ◽  
Xiaoshu Wang

Changes in the flow regime of the Yangtze River were investigated using an efficient framework that combined the eco-flow metrics (ecosurplus and ecodeficit) and Indicators of Hydrologic Alteration (IHA) metrics. A distributed hydrological model was used to simulate the natural flow regime and quantitatively separate the impacts of reservoir operation and climate variation on flow regime changes. The results showed that the flow regime changed significantly between the pre-dam and post-dam periods in the main channel and major tributaries. Autumn streamflow significantly decreased in the main channel and in the tributaries of the upper Yangtze River, as a result of a precipitation decrease and reservoir water storage. The release of water from reservoirs to support flood regulation resulted in a significant increase in winter streamflow in the main channel and in the Minjiang, Wujiang, and Hanjiang tributaries. Reservoir operation and climate variation caused a significant reduction in low flow pulse duration in the middle reach of the Yangtze River. Reservoir operation also led to an increase in the frequency of low flow pulses, an increase in the frequency of flow variation and a decrease in the rate of rising flow in most of the tributaries. An earlier annual minimum flow date was detected in the middle and lower reaches of the Yangtze River due to reservoir operation. This study provides a methodology that can be implemented to assess flow regime changes caused by dam construction in other large catchments.


2015 ◽  
Vol 47 (1) ◽  
pp. 157-170 ◽  
Author(s):  
Xuefei Mei ◽  
Zhijun Dai ◽  
Wen Wei ◽  
Jinjuan Gao

Although stage–discharge relationships are crucial for discharge estimations and hydrological analyses, few efforts have been taken to assess their temporal alterations in the context of dam regulation. Here, the upper Yangtze River basin serves as an example to demonstrate the influence of hydraulic structures on stage–discharge relationships evolution. Daily records of water level and river discharge from 1950 to 2013 at Yichang hydrometric station were grouped and analyzed. Back-propagation artificial neural network was used to model the stage–discharge relationships. The obtained curves revealed substantial shifts since the Gezhouba Dam (GD) and Three Gorges Dam (TGD) were put into practice sequentially. In low flow scenarios, the decline of water levels due to GD and TGD regulation were variable with river discharge, whereas in normal flow scenarios, the rating curves indicate equilibrium state with almost the same slopes regardless of GD and TGD influence. In high flow scenarios, the rating curves representing natural condition, GD, and TGD regulation intersect with each other. Moreover, the detected changes in stage–discharge relationship were mainly in response to dam regulation, channel erosion and sand exploitation, while irrelevant to precipitation variability. The contribution of sand mining, GD regulation, and TGD regulation on rating curve variations at Yichang station were 36%, 11%, and 53%, respectively.


Sign in / Sign up

Export Citation Format

Share Document