scholarly journals Thrust tectonics in the central part of the External Hellenides, the case of the Gavrovo thrust

2017 ◽  
Vol 47 (2) ◽  
pp. 540
Author(s):  
E. Kamberis ◽  
S. Sotiropoulos ◽  
F. Marnelis ◽  
N. Rigakis

Thrust faulting plays an important role in the structural deformation of Gavrovo and Ionian zones in the central part of the ‘External Hellenides’ fold-and-thrust belt. The Skolis mountain in NW Peloponnese as well as the Varassova and Klokova mountains in Etoloakarnania are representative cases of ramp anticlines associated with the Gavrovo thrust. Surface geology, stratigraphic data and interpretation of seismic profiles indicate that it is a crustal-scale thrust acted throughout the Oligocene time. It is characterized by a ramp-flat geometry and significant displacement (greater than 10 km). Out of sequence thrust segmentation is inferred in south Etoloakarnania area. Down flexure and extensional faulting in the Ionian zone facilitated the thrust propagation to the west. The thrust emplacement triggered halokenetic movement of the Triassic evaporites in the Ionian zone as well as diapirisms that were developed in a later stage in the vicinity of the Skolis mountain.

2021 ◽  
Vol 9 ◽  
Author(s):  
Delong Ma ◽  
Jianying Yuan ◽  
Yanpeng Sun ◽  
Hongbin Wang ◽  
Dengfa He ◽  
...  

Because of the influence of the far field effect of the collision between Euro-Asian and India plates during the Late Cenozoic, the Tian Shan orogenic belt underwent intense reactivation, forming the Southern Junggar fold-and-thrust belt (SJ-FTB) to the north and the Kuqa fold-and-thrust belt to the south. Most previous research focuses on the deformation features and mechanisms during the Late Cenozoic. However, little research has been done on deformation features and mechanisms during the Late Jurassic. In this paper, we conducted geometric and kinematic analyses of seismic profiles and outcrop data to reveal the Late Jurassic deformation characteristics in SJ-FTB. Furthermore, we carried out sandbox modeling experiments to reproduce the regional structural evolution since the Early Jurassic. Angular unconformity between the Cretaceous and Jurassic is well preserved in the Qigu anticline belt. This unconformity also exists in the Huoerguosi–Manasi–Tugulu (HMT) anticline belt, which is the second fold belt of the SJ-FTB, indicating that the HMT anticline belt started to become active during the Late Jurassic. The Qigu anticline belt reactivated intensively during the Late Cenozoic, and the displacement was transferred to the HMT anticline belt along the Paleogene Anjihaihe Formation mudstone detachment. Therefore, the present-day SJ-FTB forms because of the two-stage compressional deformation from both the Late Jurassic and Late Cenozoic (ca. 24 Ma).


1986 ◽  
Vol 23 (12) ◽  
pp. 2012-2023 ◽  
Author(s):  
Judith G. Patterson

Aphebian supracrustal sequences occur as outliers throughout the northwestern portion of the Churchill Structural Province of the Canadian Shield. In the Amer Lake area, medium- to high-grade, polydeformed Archean rocks are unconformably overlain by the Amer supracrustal sequence, which comprises quartzite, carbonate, mafic volcanic, and meta-arkose and meta-pelitic units. This supracrustal sequence is interpreted as having been deposited under miogeoclinal conditions, transitional to exogeoclinal.The Amer sequence crops out in a broad, west-southwest-plunging synclinorium and contains evidence of polyphase deformation that includes the following: (1) Folds plunging gently to the west-southwest and west-southwest-striking thrust faults, transected by oblique tear faults. Thrust vergence is northerly to northwesterly, onto the Archean craton. Because of the orientation of the synclinorium, there is a down plunge view of the thrusts at the eastern end of the belt. (2) Younger, localized cross folds, probably representative of progressive deformation. (3) Late, northwest-trending normal faults, with east side down.The stratigraphic elements and family of structures in the Amer Belt are similar to those found in the foreland fold and thrust belts of major Phanerozoic and Proterozoic orogens. The Amer Belt is interpreted as being a remnant of a once extensive foreland fold and thrust belt.Some workers have considered the northwestern Churchill Structural Province a large cratonic foreland of the Trans-Hudson Orogen. However, remnants of a foreland fold and thrust belt, a major batholithic complex, and profound geophysical breaks interpreted as being possible sutures are incorporated into a new tectono-stratigraphic model that proposes that a cryptic Aphebian orogen exists in the northwestern Churchill Structural Province.


1997 ◽  
Vol 40 (3) ◽  
Author(s):  
A. Argnani ◽  
F. Frugoni

Seismic profiles in the Central Adriatic show the presence of a WNW-ESE trending belt (Central Adriatic Deformation Belt, CADB) where broad folds of Quaternary age occur. Seismicity in the Adriatic foreland seems to be localised along the CADB which is interpreted as the result of foreland deformation linked to the Apennine fold-and-thrust belt and possibly due to the presence of an inherited structural discontinuity. Geological arguments indicate that the CADB lineament can continue underneath the Northern Apennines and might have affected its recent evolution, characterised by the rise of a linear orographic front.


2019 ◽  
Vol 54 (1) ◽  
pp. 113
Author(s):  
Charlotte A Caplan ◽  
Helen C. Gildersleeves ◽  
Al G. Harding ◽  
Benedict J. R. Harris ◽  
Benedict W. W. Johnson ◽  
...  

We present a new map of 30 km2 of the northwestern Krania Basin at 1:10,000 scale, including rocks of the Pindos Ophiolite Group and associated units, and the sedimentary fill of the Krania Basin. The Krania Basin is a flexural basin developed in the Middle – Late Eocene and filled first with alluvial fan conglomerates and later with turbidite sandstones and siltstones, following a deepening of the basin. Analysis of the clasts within the sediment, combined with paleoflow analyses, suggest sediment input from the eroding Pindos Ophiolite to the west. The Pindos Ophiolite Group is represented in the area by pillow lavas, sheeted dykes and serpentinized harzburgites of the Aspropotamos Complex. The ophiolite forms imbricated, thrust bounded blocks which show two phases of thrusting, corresponding to Late Jurassic and Eocene stages of ophiolite emplacement. We identify five stages of deformation within the basin itself, starting with Early - Middle Eocene syndepositional extensional faulting associated with the formation of the basin. This was followed by four stages of post-depositional deformation, starting with Late Eocene compression associated with basin closure, which caused thrust faulting and folding of the sediments. Oligocene dextral faulting with a thrust component affected the basin margins. Finally, two normal faulting events with different orientations have affected the basin since the Miocene.


2022 ◽  
Vol 115 (1) ◽  
Author(s):  
Federica Lanza ◽  
Tobias Diehl ◽  
Nicholas Deichmann ◽  
Toni Kraft ◽  
Christophe Nussbaum ◽  
...  

AbstractThe interpretation of seismotectonic processes within the uppermost few kilometers of the Earth’s crust has proven challenging due to the often significant uncertainties in hypocenter locations and focal mechanisms of shallow seismicity. Here, we revisit the shallow seismic sequence of Saint-Ursanne of March and April 2000 and apply advanced seismological analyses to reduce these uncertainties. The sequence, consisting of five earthquakes of which the largest one reached a local magnitude (ML) of 3.2, occurred in the vicinity of two critical sites, the Mont Terri rock laboratory and Haute-Sorne, which is currently evaluated as a possible site for the development of a deep geothermal project. Template matching analysis for the period 2000–2021, including data from mini arrays installed in the region since 2014, suggests that the source of the 2000 sequence has not been persistently active ever since. Forward modelling of synthetic waveforms points to a very shallow source, between 0 and 1 km depth, and the focal mechanism analysis indicates a low-angle, NNW-dipping, thrust mechanism. These results combined with geological data suggest that the sequence is likely related to a backthrust fault located within the sedimentary cover and shed new light on the hosting lithology and source kinematics of the Saint-Ursanne sequence. Together with two other more recent shallow thrust faulting earthquakes near Grenchen and Neuchâtel in the north-central portion of the Jura fold-and-thrust belt (FTB), these new findings provide new insights into the present-day seismotectonic processes of the Jura FTB of northern Switzerland and suggest that the Jura FTB is still undergoing seismically active contraction at rates likely < 0.5 mm/yr. The shallow focal depths provide indications that this low-rate contraction in the NE portion of the Jura FTB is at least partly accommodated within the sedimentary cover and possibly decoupled from the basement.


2018 ◽  
Vol 156 (4) ◽  
pp. 620-638 ◽  
Author(s):  
KATARZYNA DUDZISZ ◽  
KRZYSZTOF MICHALSKI ◽  
RAFAŁ SZANIAWSKI ◽  
KRZYSZTOF NEJBERT ◽  
GEOFFREY MANBY

AbstractMagnetic, petrological and mineralogical data from 13 sites (99 independently oriented samples) of the Lower Triassic rocks located in the SW segment of the West Spitsbergen Fold and Thrust Belt (WSFTB) are presented in order to identify the ferrimagnetic carriers and establish the origin of the natural remanent magnetization (NRM). Volcanic lithoclasts and other detrital resistive grains in which the primary magnetization might endure are present in some samples. On the other hand, petrological studies indicate that sulphide remineralization could have had an important influence on the remagnetization of these rocks. The dominant ferrimagnetic carriers are titanomagnetite and magnetite. While the titanomagnetite may preserve the primary magnetization, the magnetite is a more likely potential carrier of secondary overprints. The complex NRM patterns found in most of the samples may be explained by the coexistence and partial overlapping of components representing different stages of magnetization. Components of both polarities were identified in the investigated material. The reversal test performed on the most stable components that demagnetized above 300°C proved to be negative at the 95% confidence level at any stage of unfolding. They are better grouped, however, after 100% tectonic corrections and the most stable components are clustered in high inclinations (c. 70–80°). This suggests that at least part of the measured palaeomagnetic vectors represent a secondary prefolding magnetic overprint that originated in post-Jurassic time before the WSFTB event. Vitrinite reflectance studies show these rocks have not been subjected to any strong heating (<200°C).


2002 ◽  
Vol 139 (1) ◽  
pp. 47-72 ◽  
Author(s):  
K. SAALMANN ◽  
F. THIEDIG

The Tertiary fold-and-thrust belt on Brøggerhalvøya is characterized by a NE-vergent pile of nine thrust sheets. The sole thrust of the pile is located in Precambrian phyllites and climbs up-section to the northeast. Four lower thrust sheets consisting predominantly of Upper Palaeozoic sediments are overlain by two thrust sheets in the central part of the stack which contain a kilometre-scale syncline and anticline. The fold is cut by juxtaposed thrusts giving rise to the formation of three structurally higher basement-dominated thrust sheets. A multiple-stage kinematic model is proposed including (1) in-sequence foreland-propagating formation of the lower thrust sheets in response to N–S subhorizontal bedding-parallel movements, (2) a change in tectonic transport to ENE and out-of-sequence thrusting and formation of the kilometre-scale fold-structure followed by (3) truncation of the kilometre-scale fold and stacking of the highest basement-dominated thrust sheets by hind-ward-propagating out-of-sequence thrusting. The strain of the thrust sheets is predominantly compressive with the exception of the structurally highest thrust sheets, reflecting a temporal change to a more transpressive regime. Thrusting was followed by (4) N–S extension and (5) W–E extension. Comparison of the structural geometry and kinematic evolution of Brøggerhalvøya with the data reported for the fold belt further south allows us to assume a coeval evolution with the fold belt. A latest Paleocene/Early Eocene age for the main phase of thrusting is suggested for the West Spitsbergen Fold-and-Thrust Belt; the main phases therefore pre-date the separation of Svalbard and Greenland due to right-lateral movements along the Hornsund Fault Zone. The fold belt's temporal evolution followed by the formation of the Forlandsundet Graben can be linked with the plate-kinematic framework in the span between latest Paleocene and Middle Eocene times.


Sign in / Sign up

Export Citation Format

Share Document