scholarly journals AQUEOUS ENVIRONMENT AND EFFECTS ON THE CIVIL AREAS: THE CASE OF NAFPLIO

2017 ◽  
Vol 43 (3) ◽  
pp. 1508 ◽  
Author(s):  
P. Sabatakakis ◽  
G. Koukis

This paper made an effort through the data and conclusions drawn to highlight the impact of the water element, surface and groundwater in urban and suburban area of Nafplio. Through exploratory wells constructed for this reason ,water - measurements and water – chemical analysis carried out, made a series of thematic maps which are dimensioned Spatiotemporal rain water flocking to urban and suburban area in case of extreme rainfall events, illustrating the depth, the direction of groundwater flow and the corrosivity of groundwater in relation to the foundations. The accuracy of the figures obtained for surface water and groundwater is a function of time series and the density of the network, and certainly is indicative and could be much more detailed if the network was denser. In any case, this work tries to highlight the value that may have similar operations on urban planning and foundations.

2015 ◽  
Vol 19 (4) ◽  
pp. 2057-2078 ◽  
Author(s):  
A. Rouillard ◽  
G. Skrzypek ◽  
S. Dogramaci ◽  
C. Turney ◽  
P. F. Grierson

Abstract. Long-term hydrologic records provide crucial reference baselines of natural variability that can be used to evaluate potential changes in hydrologic regimes and their impacts. However, there is a dearth of studies of the hydrologic regimes for tropical drylands where intraseasonal and interannual variability in magnitude and frequency of precipitation are extreme. Here, we sought to identify the main hydroclimatic determinants of the strongly episodic flood regime of a large catchment in the semi-arid, subtropical northwest of Australia and to establish the background of hydrologic variability for the region over the last century. We used a monthly sequence of satellite images to quantify surface water expression on the Fortescue Marsh, the largest water feature of inland northwest Australia, from 1988 to 2012. We used this sequence together with instrumental rainfall data to build a statistical model with multiple linear regression and reconstruct monthly history of floods and droughts since 1912. We found that severe and intense regional rainfall events, as well as the sequence of recharge events both within and between years, determine surface water expression on the floodplain (i.e. total rainfall, number of rain days and carried-over inundated area; R2adj = 0.79; p value < 0.001, ERMSP = 56 km2). The most severe reconstructed inundation over the last century was in March 2000 (1000 km2), which is less than the 1300 km2 area required to overflow to the adjacent catchment. The Fortescue Marsh was completely dry for 32% of all years, for periods of up to four consecutive years. Extremely wet years (seven of the 100 years) caused the Marsh to remain inundated for up to 12 months; only 25% of years (9% of all months) had floods of greater than 300 km2. The prolonged, severe and consecutive yearly inundations between 1999 and 2006 were unprecedented compared to the last century. While there is high inter-annual variability in the system, if the frequency and intensity of extreme rainfall events for the region were to increase (or be similar to 1999–2006), surface water on the Marsh will become more persistent, in turn impacting its structure and functioning as a wetland.


2021 ◽  
Author(s):  
Christoph Sauter ◽  
Christopher White ◽  
Hayley Fowler ◽  
Seth Westra

&lt;p&gt;Heatwaves and extreme rainfall events are natural hazards that can have severe impacts on society. The relationship between temperature and extreme rainfall has received scientific attention with studies focussing on how single daily or sub-daily rainfall extremes are related to day-to-day temperature variability. However, the impact multi-day heatwaves have on sub-daily extreme rainfall events and how extreme rainfall properties change during different stages of a heatwave remains mostly unexplored.&lt;/p&gt;&lt;p&gt;In this study, we analyse sub-daily rainfall records across Australia, a country that experiences severe natural hazards on a frequent basis, and determine their extreme rainfall properties, such as rainfall intensity, duration and frequency during SH-summer heatwaves. These properties are then compared to extreme rainfall properties found outside heatwaves, but during the same time of year, to examine to what extent they differ from normal conditions. We also conduct a spatial analysis to investigate any spatial patterns that arise.&lt;/p&gt;&lt;p&gt;We find that rainfall breaking heatwaves is often more extreme than average rainfall during the same time of year. This is especially prominent on the eastern and south-eastern Australian coast, where frequency and intensity of sub-daily rainfall extremes show an increase during the last day or the day immediately after a heatwave. We also find that although during heatwaves the average rainfall amount and duration decreases, there is an increase in sub-daily rainfall intensity when compared to conditions outside heatwaves. This implies that even though Australian heatwaves are generally characterised by dry conditions, rainfall occurrences within heatwaves are more intense.&lt;/p&gt;&lt;p&gt;Both heatwaves and extreme rainfall events pose great challenges for many sectors such as agriculture, and especially if they occur together. Understanding how and to what degree these events co-occur could help mitigate the impacts caused by them.&lt;/p&gt;


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1631 ◽  
Author(s):  
Yi-Chiung Chao ◽  
Chi-Wen Chen ◽  
Hsin-Chi Li ◽  
Yung-Ming Chen

In recent years, extreme weather phenomena have occurred worldwide, resulting in many catastrophic disasters. Under the impact of climate change, the frequency of extreme rainfall events in Taiwan will increase, according to a report on climate change in Taiwan. This study analyzed riverbed migrations, such as degradation and aggradation, caused by extreme rainfall events under climate change for the Choshui River, Taiwan. We used the CCHE1D model to simulate changes in flow discharge and riverbed caused by typhoon events for the base period (1979–2003) and the end of the 21st century (2075–2099) according to the climate change scenario of representative concentration pathways 8.5 (RCP8.5) and dynamical downscaling of rainfall data in Taiwan. According to the results on flow discharge, at the end of the 21st century, the average peak flow during extreme rainfall events will increase by 20% relative to the base period, but the time required to reach the peak will be 8 h shorter than that in the base period. In terms of the results of degradation and aggradation of the riverbed, at the end of the 21st century, the amount of aggradation will increase by 33% over that of the base period. In the future, upstream sediment will be blocked by the Chichi weir, increasing the severity of scouring downstream. In addition, due to the increased peak flow discharge in the future, the scouring of the pier may be more serious than it is currently. More detailed 2D or 3D hydrological models are necessary in future works, which could adequately address the erosive phenomena created by bridge piers. Our results indicate that not only will flood disasters occur within a shorter time duration, but the catchment will also face more severe degradation and aggradation in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingxiang Shu ◽  
Asaad Y. Shamseldin ◽  
Evan Weller

AbstractThis study quantifies the impact of atmospheric rivers (ARs) on rainfall in New Zealand. Using an automated AR detection algorithm, daily rainfall records from 654 rain gauges, and various atmospheric reanalysis datasets, we investigate the climatology of ARs, the characteristics of landfalling ARs, the contribution of ARs to annual and seasonal rainfall totals, and extreme rainfall events between 1979 and 2018 across the country. Results indicate that these filamentary synoptic features play an essential role in regional water resources and are responsible for many extreme rainfall events on the western side of mountainous areas and northern New Zealand. In these regions, depending on the season, 40–86% of the rainfall totals and 50–98% of extreme rainfall events are shown to be associated with ARs, with the largest contributions predominantly occurring during the austral summer. Furthermore, the median daily rainfall associated with ARs is 2–3 times than that associated with other storms. The results of this study extend the knowledge on the critical roles of ARs on hydrology and highlight the need for further investigation on the landfalling AR physical processes in relation to global circulation features and AR sources, and hydrological hazards caused by ARs in New Zealand.


2021 ◽  
Author(s):  
Ibrahim NJOUENWET ◽  
Lucie A. Djiotang Tchotchou ◽  
Brian Odhiambo Ayugi ◽  
Guy Merlin Guenang ◽  
Derbetini A. Vondou ◽  
...  

Abstract The Sudano-Sahelian region of Cameroon is mainly drained by the Benue, Chari and Logone rivers, which are very useful for water resources, especially for irrigation, hydropower generation, and navigation. Long-term changes in mean and extreme rainfall events in the region may be of crucial importance in understanding the impact of climate change. Daily and monthly rainfall data from twenty-five synoptic stations in the study area from 1980 to 2019 and extreme indices from the Expert Team on Climate Change Detection and Indices (ETCCDI) measurements were estimated using the non-parametric Modified Mann-Kendall test and the Sen slope estimator. The precipitation concentration index (PCI), the precipitation concentration degree (PCD), and the precipitation concentration period (PCP) were used to explore the spatio-temporal variations in the characteristics of rainfall concentrations. An increase in extreme rainfall events was observed, leading to an upward trend in mean annual. Trends in consecutive dry days (CDD) are significantly increasing in most parts of the study area. This could mean that the prevalence of drought risk is higher in the study area. Overall, the increase in annual rainfall could benefit the hydro-power sector, agricultural irrigation, the availability of potable water sources, and food security.


2021 ◽  
Author(s):  
Smrati Purwar ◽  
Gyanendranath Mohapatra ◽  
Rakesh Vasudevan

&lt;p&gt;Hydro-meteorological disasters, particularly the extreme rainfall events (EREs) and associated flash floods, are very frequent in the major metro cities in India during recent years and in many occasions they cause massive destruction to life and property which in long run make adverse socio-economic impacts over the country. Hence, it makes formost importance and has great societal relevance to modellers working such area to develop an advance prediction system for such disasters in India.A strategic framework combining modelling and data analytics is integral part of developing advanced warning system for preparedness during such disasters. In this study, the role of landuse/landcover like built-up, vegetation, barrenland and waterbodies over the Bangalore city in flash flood occurrence is examined using multispectral spatio-temporal satellite data.The recent LULC map evidences a drastic changes in urban landscape that resulted in loss of natural drainage and waterbeds causing frequent floods. Digital Elevation Map (DEM) is analysed to know the&amp;#160; low-lying and high elevation topography compared with&amp;#160; Mean Sea Level(MSL)to quantify the impact of flooding during Extreme Rainfall Events(ERE) on the different part of the Bangalore city. Using Triangular Irregular Network (TIN), flood simulation is carried out for highland and lowlandarea &amp;#160;to study immediate affected areas during EREs Storm Water Modelling &amp;#160;is carried out for different regions in the city to obtain flood pattern, time and volume during selected EREs. The framework developed and simulation results are very useful in generation of management and mitigation strategy by various user agencies.&lt;/p&gt;


2006 ◽  
Vol 327 (3-4) ◽  
pp. 304-314 ◽  
Author(s):  
G. Boni ◽  
A. Parodi ◽  
R. Rudari

2021 ◽  
Author(s):  
Jun Xie ◽  
Thomas Coulthard

&lt;p&gt;Mass movement such as landslides and rock fall is a prominent source of sediment in active mountain belt. Earthquake triggered landslides can generate substantial loose sediment and have significant geomorphic effects on long term landscape evolution. More importantly, these landslide impacts to land surface vary a lot due to the divergence of landslide characteristics and surrounding environment settings. Downslope and downstream transport of sediment into the channel network is fairly sensitive to climatic perturbations especially for extreme rainfall events. A wide variety of studies attempt to quantify or determine the contribution of landslide generated material to gross sediment budget and the corresponding retention time scale of landslide generated deposit in the mountain basin, whereas no established techniques can explicitly fingerprint/track landslide derived sediment. In this study, we first generated the hourly future extreme rainfall under two emission scenario (RCP4.5, RCP8.5) using &amp;#8216;NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)&amp;#8217; dataset. A new tracing function is incorporated into CAESAR-lisflood to track the landslide derived sediment footprint and dynamics in response to climate change. The landscape evolution at the Hongxi catchment, which is suffered tremendous damage from Wenchuan earthquake (Ms 8.0), are then simulated using CAESAR-lisflood under two climate scenarios. The results show that more than 80 percent of material generated by seismic landslides are still retained at the hillslope even after a sufficient time (e.g. 100 year). This study is to compare the spatial-temporal evolution pattern of landslides-derived sediment under two climatic scenarios (RCP4.5, RCP8.5), thus probing into the landslide generated sediment transport and budget respond to the climate change especially the impact of extreme rainfall events. Numerical modelling can provide a quick and effective tool for broad scale predictions of sediment produced by landslide events under different climatic predictions, which is of great importance for seismic induced disaster protection and reduction under climate change.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document