scholarly journals LANDSLIDE SUSCEPTIBILITY MAPPING OF THE NORTHEASTERN PART OF ACHAIA PREFECTUREUSING ANALYTICAL HIERARCHICAL PROCESS AND GIS TECHNIQUES

2017 ◽  
Vol 43 (3) ◽  
pp. 1637
Author(s):  
D. Rozos ◽  
D.G. Bathrellos ◽  
D.H. Skilodimou

Landslides are one of the most frequent and disastrous natural hazards worldwide. Thus, the need of landslide susceptibility maps is of primary importance as they are both a useful tool for the land use planning and a necessary step for future development activities. This paper presents an integrated technique of analytical hierarchical process (AHP) and geographic information system (GIS) to create a landslide susceptibility map of the NE part of Achaia prefecture. The study area mainly consists of Neogene deposits and it is a part of the Corinthian graben, which characterized by intense neotectonic activity. Therefore, it is affected by many slope movements that usually cause serious damages in inhabitant areas and road networks. Based on field survey data analysis six parameters were chosen as major parameters that influence the stability of slopes to the direction of landslide manifestation. The AHP method identifies both the rate of the individual classes, and the weight of each factor. Spatial layers with their corresponding rates and weights were linearly combined to prepare the landslide susceptibility map, which includes four zones of slope movement’s susceptibility, namely a low, a moderate a high and a very high zone. The evaluation and final confirmation of the map was based on a great number of recorded landslides in the area.

2018 ◽  
Vol 149 ◽  
pp. 02084 ◽  
Author(s):  
L Ait Brahim ◽  
M Bousta ◽  
I A Jemmah ◽  
I El Hamdouni ◽  
A ElMahsani ◽  
...  

The peninsula of Tangier (Northern Morocco) is submitted to a significant number of landslides each year due to its lithological, structural and morphological complexity; which cause a lot of damage to the road network and other related infrastructure. The main objective of this study is to create a landslide indexed susceptibility map of Tangier peninsula, by using AHP (Analytical Hierarchical Processes) model to calculate each factor’s weight. The work is made via GIS by using an ArcGIS AHP extension. In the current research, First of all, the four main types of landslides were identified and mapped from existing documents, works and new data which came from either remote sensing or fieldwork. Lithology, land use, slope, hypsometry, exposure, fault density and drainage network density were used as main parameters controlling the occurrence of the selected landslides. Then, afterward, each parameter is classified into a number of significant classes based on their relative influence on gravitational movement genesis. The validity of the susceptibility zoning map which is obtained through linear summation of indexed maps was tested and cross-checked by inventoried and studied landslides. The obtained landslide susceptibility map constitutes a powerful decision-making tool in land-use planning, i.e. New highways, secondary highways, railways, etc. within the national development program in the Northern provinces. It is a necessary step for the landslides hazard assessment in the Tangier peninsula in northern Morocco.


Author(s):  
Barahim Adnan A. ◽  
Khanbari Khaled M. ◽  
Algodami Amal F. ◽  
Almadhaji Ziad A. ◽  
Adris Ahmed M.

A slope stability assessment of Wadi Dhahr area, located northwest of Sana’a the capital of Yemen, was carried out in this study. The study area consists of sandstone and volcanic rocks that are deformed by number of faults, joints and basaltic dykes. All the important factors affecting slope stability in the area such as slope angle, slope height, discontinuities measurements, weathering, vegetation cover, rainfall and previous landslides were evaluated. The study was conducted based on the integration of field investigation and satellite image processing. A landslide susceptibility map was produced with the Landslide Possibility Index (LP1) System, and the correlation values were computed between the factors measured and Landslide Possibility Index values. The fractures counted by satellite image were categorised according to their length and zones based on their concentrations. It was found that plain sliding and rockfall are the main modes of failure in the area, while rolling and toppling are rare. Some remedial measures are proposed to protect the slopes where it is needed,  such as the removal of rock overhangs, unstable blocks and trees, and by supporting the toe of slopes and overhanging parts by retaining walls and erecting well sealed drainage conduits. The results will assist in slope management and land use planning in the area.


2015 ◽  
Vol 4 (2) ◽  
pp. 16-33 ◽  
Author(s):  
Halil Akıncı ◽  
Ayşe Yavuz Özalp ◽  
Mehmet Özalp ◽  
Sebahat Temuçin Kılıçer ◽  
Cem Kılıçoğlu ◽  
...  

Artvin is one of the provinces in Turkey where landslides occur most frequently. There have been numerous landslides characterized as natural disaster recorded across the province. The areas sensitive to landslides across the province should be identified in order to ensure people's safety, to take the necessary measures for reducing any devastating effects of landslides and to make the right decisions in respect to land use planning. In this study, the landslide susceptibility map of the Central district of Artvin was produced by using Bayesian probability model. Parameters including lithology, altitude, slope, aspect, plan and profile curvatures, soil depth, topographic wetness index, land cover, and proximity to the road and stream were used in landslide susceptibility analysis. The landslide susceptibility map produced in this study was validated using the receiver operating characteristics (ROC) based on area under curve (AUC) analysis. In addition, control landslide locations were used to validate the results of the landslide susceptibility map and the validation analysis resulted in 94.30% accuracy, a reliable outcome for this map that can be useful for general land use planning in Artvin.


2012 ◽  
Vol 225 ◽  
pp. 442-447 ◽  
Author(s):  
Biswajeet Pradhan ◽  
Zulkiflee Abd. Latif ◽  
Siti Nur Afiqah Aman

The escalating number of occurrences of natural hazards such as landslides has raised a great interest among the geoscientists. Due to the extremely high number of point’s returns, airborne LiDAR permits the formation of more accurate DEM compared to other space borne and airborne remote sensing techniques. This study aims to assess the capability of LiDAR derived parameters in landslide susceptibility mapping. Due to frequent occurrence of landslides, Ulu Klang in Selangor state in Malaysia has been considered as application site. A high resolution of airborne LiDAR DEM was constructed to produce topographic attributes such as slope, curvature and aspect. These data were utilized to derive secondary deliverables of landslide parameters such as topographic wetness index (TWI), surface area ratio (SAR) and stream power index (SPI). A probabilistic based frequency ratio model was applied to establish the spatial relationship between the landslide locations and each landslide related factors. Subsequently, factor ratings were summed up to yield Landslide Susceptibility Index (LSI) and finally a landslide susceptibility map was prepared. To test the model performance, receiver operating characteristics (ROC) curve was carried out together with area under curve (AUC) analysis. The produced landslide susceptibility map demonstrated that high resolution airborne LiDAR data has huge potential in landslide susceptibility mapping.


Landslides are highly threatening a phenomenon which is very common in hilly region and mountainous regions. These landslides trigger major risks leading to heavy losses in terms of life and property. Many studies were conducted globally to determine Landslide vulnerability of different locations. In order to assess vulnerability, there were few studies around Landslides Susceptibility mapping also whose main objective is to identify high-risk vulnerable areas, there by applying measure to reduce the damage caused, if it were to happen in near future. In literature, there are many methods available for predictive susceptibility mapping of landslides. However, identification of any of the prevalent method for a specific area require utmost care and prudence because land sliding is a result of complex geo-environmental spatial factors. Mandakini valley is highly ruggedized terrain with intensive rains during monsoon season. As a result, Landslides are very common in the Mandakini River valley and its catchment area. These landslides cause severe damage to human settlements and infrastructure present in this area. In this study, we have used certainty factor method in order to generate landslide susceptibility map for the catchment area of Mandakini river. Certainty factor approach is a bi-variate probabilistic method which uses Geo-environmental parameters like elevation, slope, aspect, rainfall distance away from river, soil characteristics etc. to generate landslide susceptibility map. A Script was developed in ArcPy - a python package to design tools for generating susceptibility map. These tools can run both at desktop level and at server level and generate results in an integrated way. Esri ArcMap 10.7 is used in order to generate required data layers and thematic maps. Overall, this paper leverages GIS technology and its tools to performs Landslide Susceptibility Mapping using Probabilistic Certainty Factor and generate Hazard Zonation of Mandakini Valley using an automated script for generating Landslide Susceptibility Mapping and Hazard Risk Zonation. It was found that out of 696, total 136 villages are under high risk of landsides, total 329 villages are under moderate risks and around 231 villages are under low risk zonation impacting lives of approx. 216166 people. Also, it is worth mentioning that a GIS based script was developed to automate generation of Landslide Susceptibility Maps which can be used where the same geological and topographical feature prevails.


2021 ◽  
Vol 16 (4) ◽  
pp. 521-528
Author(s):  
Nguyen Trung Kien ◽  
The Viet Tran ◽  
Vy Thi Hong Lien ◽  
Pham Le Hoang Linh ◽  
Nguyen Quoc Thanh ◽  
...  

Tinh Tuc town, Cao Bang province, Vietnam is prone to landslides due to the complexity of its climatic, geological, and geomorphological conditions. In this study, in order to produce a landslide susceptibility map, the modified analytical hierarchy process and landslide susceptibility analysis methods were used together with the layers, including: landslide inventory, slope, weathering crust, water storage, geology, land use, and distance from the road. In the study area, 98% of landslides occurred in highly or completely weathered units. Geology, land use, and water storage data layers were found to be important factors that are closely related with the occurrence of landslides. Although the weight of the “distance from the road” factor has a low value, the weight of layer “<100 m” has a high value. Therefore, the landslide susceptibility index very high is concentrated along the roads. For the validation of the predicted result, the landslide susceptibility map was compared with the landslide inventory map containing 47 landslides. The outcome shows that about 90% of these landslides fall into very high susceptibility zones.


2007 ◽  
Vol 40 (4) ◽  
pp. 1973 ◽  
Author(s):  
I. Ladas ◽  
I. Fountoulis ◽  
I. Mariolakos

The purpose of this study is to assess the susceptibility of landslides at the eastern part of Messinia prefecture using GIS and Multicriteria Decision Analysis. Analytic Hierarchy Process and Weighted Linear Combination method were used to create a landslide susceptibility map for the study area. The produced map provides valuable information concerning the stability conditions of the territory and may serve as the first step in a complete hazard assessment towards the mitigation of natural landslide disasters in Messinia Prefecture area. Particularly the intention is to transfer effectively information regarding slope stability to non-geologists who take decisions for future land use planning processes and major construction projects.


Author(s):  
Amol Sharma ◽  
Chander Prakash

Landslide susceptibility mapping has proved to be crucial tool for effective disaster management and planning strategies in mountainous regions. The present study is perused to investigate the changes in the landslide susceptibility of the Mandi district of Himachal Pradesh due to road construction. For this purpose, an inventory of 1723 landslides was generated from various sources. Out of these, 1199 (70%) landslides were taken in the training dataset to be used for modelling and prediction purposes, while 524 (30%) landslides were taken in the testing dataset to be used for validation purposes. Eleven landslide causative factors were selected from numerous hydrological, geological and topographical factors and were analyzed for landslide susceptibility mapping using three bivariate statistical models, namely; Frequency Ratio (FR), Certainty Factor (CF) and Shanon Entropy (SE). Two sets of LSM maps i.e. landslide susceptibility map natural (LSMN) and landslide susceptibility map road (LSMR), were generated using the above mentioned bivariate models and were divided into five landslide susceptibility classes namely; very low, low, medium, high and very high. These maps were analyzed for accuracy of prediction and validation using receiver operating characteristic (ROC) curves and area under curve (AUC) technique which indicated that all three bivariate statistical models performed satisfactorily with the SE model had the highest prediction and validation accuracy of 83-86%. Further analysis LSM maps confirmed that the percentage area in high and very high classes of land-slide susceptibility increased by 2.67-4.17% due to road construction activities in the study area.


2021 ◽  
Vol 16 (4) ◽  
pp. 529-538
Author(s):  
Thi Thanh Thuy Le ◽  
The Viet Tran ◽  
Viet Hung Hoang ◽  
Van Truong Bui ◽  
Thi Kien Trinh Bui ◽  
...  

Landslides are considered one of the most serious problems in the mountainous regions of the northern part of Vietnam due to the special topographic and geological conditions associated with the occurrence of tropical storms, steep slopes on hillsides, and human activities. This study initially identified areas susceptible to landslides in Ta Van Commune, Sapa District, Lao Cai Region using Analytical Hierarchy Analysis. Ten triggering and conditioning parameters were analyzed: elevation, slope, aspect, lithology, valley depth, relief amplitude, distance to roads, distance to faults, land use, and precipitation. The consistency index (CI) was 0.0995, indicating that no inconsistency in the decision-making process was detected during computation. The consistency ratio (CR) was computed for all factors and their classes were less than 0.1. The landslide susceptibility index (LSI) was computed and reclassified into five categories: very low, low, moderate, high, and very high. Approximately 9.9% of the whole area would be prone to landslide occurrence when the LSI value indicated at very high and high landslide susceptibility. The area under curve (AUC) of 0.75 illustrated that the used model provided good results for landslide susceptibility mapping in the study area. The results revealed that the predicted susceptibility levels were in good agreement with past landslides. The output also illustrated a gradual decrease in the density of landslide from the very high to the very low susceptible regions, which showed a considerable separation in the density values. Among the five classes, the highest landslide density of 0.01274 belonged to the very high susceptibility zone, followed by 0.00272 for the high susceptibility zone. The landslide susceptibility map presented in this paper would help local authorities adequately plan their landslide management process, especially in the very high and high susceptible zones.


2019 ◽  
pp. 255-267
Author(s):  
Edina Józsa ◽  
Dénes Lóczy ◽  
Mauro Soldati ◽  
Lucian Daniel Drăguţ ◽  
József Szabó

The complexity of landslides makes it difficult to predict the spatial distribution of landslide susceptibility and hazard. Although in most European countries the basic preconditions for the occurrence of mass movements (rocks and topography) have been mapped in detail, the triggering factors (e.g. precipitation or earthquakes) are much less predictable. A detailed nation-wide inventory for Hungary provides a unique base for landslide susceptibility mapping. As the methodology for the assessment the technique applied in the ELSUS 1000 project was selected. The micro-regions of Hungary were identified where mass movements contribute to land degradation. The paper provides a statistical evaluation of the distribution of landslides, depicts landslide susceptibility on maps and reveals the role of anthropogenic factors in the generation of mass movements. The mid-resolution elevation model (SRTM1), land cover data (CLC50) and surface geology database (Mining and Geological Survey of Hungary) allowed for the derivation of a landslide susceptibility map more detailed than before. Along with its background information the map reflects and explains the differences in landslide susceptibility among the individual hilly and mountainous regions.


Sign in / Sign up

Export Citation Format

Share Document