scholarly journals MEASUREMENT OF PREFERENTIAL FLOW DURING INFILTRATION AND EVAPORATION IN POROUS MEDIA

2017 ◽  
Vol 43 (4) ◽  
pp. 1831
Author(s):  
A. Papafotiou ◽  
C. Schütz ◽  
P. Lehmann ◽  
P. Vontobel ◽  
D. Or ◽  
...  

Infiltration and evaporation are governing processes for water exchange between soil and atmosphere. In addition to atmospheric supply or demand, infiltration and evaporation rates are controlled by the material properties of the subsurface and the interplay between capillary, viscous and gravitational forces. This is commonly modeled with semi-empirical approaches using continuum models, such as the Richards equation for unsaturated flow. However, preferential flow phenomena often occur, limiting or even entirely suspending the applicability of continuum-based models. During infiltration, unstable fingers may form in homogeneous or heterogeneous porous media. On the other hand, the evaporation process may be driven by the hydraulic coupling of materials with different hydraulic functions found in heterogeneous systems. To analyze such preferential flow processes, water distribution was monitored in infiltration and evaporation lab experiments using neutron transmission techniques. Measurements were performed in 2D and 3D, using homogeneous and heterogeneous setups. The experimental findings demonstrate the fingering effect in infiltration and how it is influenced by the presence of fine inclusions in coarse background material. During evaporation processes, the hydraulic coupling effect is found to control the evaporation rate, limiting the modeling of water balances between soil and surface based on surface information alone.

2021 ◽  
Author(s):  
S.R. Zhu ◽  
L.Z. Wu ◽  
T. Ma ◽  
S.H. Li

Abstract The numerical solution of various systems of linear equations describing fluid infiltration uses the Picard iteration (PI). However, because many such systems are ill-conditioned, the solution process often has a poor convergence rate, making it very time-consuming. In this study, a control volume method based on non-uniform nodes is used to discretize the Richards equation, and adaptive relaxation is combined with a multistep preconditioner to improve the convergence rate of PI. The resulting adaptive relaxed PI with multistep preconditioner (MP(m)-ARPI) is used to simulate unsaturated flow in porous media. Three examples are used to verify the proposed schemes. The results show that MP(m)-ARPI can effectively reduce the condition number of the coefficient matrix for the system of linear equations. Compared with conventional PI, MP(m)-ARPI achieves faster convergence, higher computational efficiency, and enhanced robustness. These results demonstrate that improved scheme is an excellent prospect for simulating unsaturated flow in porous media.


Author(s):  
Luis Cueto-Felgueroso ◽  
Ruben Juanes

Existing continuum models of multiphase flow in porous media are unable to explain why preferential flow (fingering) occurs during infiltration into homogeneous, dry soil. We identify a relevant pattern-forming mechanism in the dynamics of the wetting front, and present a macroscopic model that reproduces the experimentally observed features of fingered flows. The proposed model reveals a scaling between local and nonlocal interface phenomena in imbibition, and does not introduce new independent parameters. The predictions based on this model are consistent with experiments and theories of scaling in porous media.


2021 ◽  
Author(s):  
S.R. Zhu ◽  
L.Z. Wu ◽  
S.H. Li

Abstract Picard iteration method is commonly used to obtain numerical solution of unsaturated flow in porous media. However, because the system of linear equations derived from Richards equation is seriously ill-conditioned, Picard iteration has slow convergence rate and low computational efficiency, particularly in layered porous media. In this study, control volume method based on non-uniform nodes is used to discrete Richards equation. To improve the convergence rate of Picard iteration, we combine the non-uniform multigrid correction method with the multistep preprocessing technology. Thus, an improved Picard iteration scheme with multistep preconditioner based on non-uniform multigrid correction method (NMG-MPPI(m)) is proposed to model 1D unsaturated flow in layered porous media. Three test cases were used to verify the proposed schemes. The result shows that the condition number of the coefficient matrix has been greatly reduced using the multistep preconditioner. Numerical results indicate that NMG-MPPI(m) can solve Richards equation at a faster convergence rate, with higher calculation accuracy and good robustness. Compared with conventional Picard iteration, NMG-MPPI(m) shows a very high speed-up ratio. As a result, the improved Picard iteration scheme has good application for simulating unsaturated flow in layered porous media.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 904
Author(s):  
Denis Spiridonov ◽  
Maria Vasilyeva ◽  
Eric T. Chung ◽  
Yalchin Efendiev ◽  
Raghavendra Jana

In this paper, we consider unsaturated filtration in heterogeneous porous media with rough surface topography. The surface topography plays an important role in determining the flow process and includes multiscale features. The mathematical model is based on the Richards’ equation with three different types of boundary conditions on the surface: Dirichlet, Neumann, and Robin boundary conditions. For coarse-grid discretization, the Generalized Multiscale Finite Element Method (GMsFEM) is used. Multiscale basis functions that incorporate small scale heterogeneities into the basis functions are constructed. To treat rough boundaries, we construct additional basis functions to take into account the influence of boundary conditions on rough surfaces. We present numerical results for two-dimensional and three-dimensional model problems. To verify the obtained results, we calculate relative errors between the multiscale and reference (fine-grid) solutions for different numbers of multiscale basis functions. We obtain a good agreement between fine-grid and coarse-grid solutions.


2021 ◽  
Author(s):  
Thomas Oudega ◽  
Gerhard Lindner ◽  
Julia Derx ◽  
Andreas Farnleitner ◽  
Regina Sommer ◽  
...  

<p>Groundwater contamination and subsequent transport of viruses and bacteria are a major concern in aquifers worldwide. To ascertain the ability of these aquifers to remove pathogens, tracer tests with microbial indicators are carried out. But because these tests are laborious and require special permission, column tests are often done instead. Unfortunately, results from column tests tend to grossly overestimate removal rates λ when compared to the field scale, which can lead to underestimations of groundwater contamination risks. Scale is an important consideration when examining pathogen transport through porous media, as pathogen removal rarely happens by linear processes. Field tests were carried out with Bacillus subtilis endospores and phiX174 coliphages over a distance of 25 m in an alluvial gravel aquifer in Vienna, Austria. The sandy gravel material from the field site was also used in column tests with the same tracers. Both attachment-detachment and Colloid Filtration Theory were used to model these tests. The results show a big difference in removal between the two scales. A comparison with the literature showed a correlation between the heterogeneity (or preferential flow) of the porous media and the difference in removal rates between the column and field scale.</p>


2009 ◽  
Vol 6 (3) ◽  
pp. 3811-3833 ◽  
Author(s):  
A. Barari ◽  
M. Omidvar ◽  
A. R. Ghotbi ◽  
D. D. Ganji

Abstract. Unsaturated flow of soils in unsaturated soils is an important problem in geotechnical and geo-environmental engineering. Richards' equation is often used to model this phenomenon in porous media. Obtaining proper solution to this equation therefore provides better means to studying the infiltration into unsaturated soils. Available methods for the solution of Richards' equation mostly fall in the category of numerical methods, often having restrictions for practical cases. In this research, two analytical methods known as Homotopy Perturbation Method (HPM) and Variational Iteration Method (VIM) have been successfully utilized for solving Richards' equation. Results obtained from the two methods mentioned show a remarkably high precision in the obtained solution, compared with the existing exact solutions available.


Sign in / Sign up

Export Citation Format

Share Document