scholarly journals One and Two Proton Separation Energies from Nuclear Mass Systematics using Neural Networks

2020 ◽  
Vol 13 ◽  
pp. 305
Author(s):  
S. Athanassopoulos ◽  
E. Mavrommatis ◽  
K. A. Gernoth ◽  
J. W. Clark

We deal with the systematics of one and two proton separation energies as predicted by our latest global model for the masses of nuclides developed with the use of neural networks. Among others, such systematics is useful as input to the astrophysical rp-process and to the one and two proton radioactive studies. Our results are compared with the experimental separation energies referred to in the 2003 Atomic Mass Evaluation and with those evaluated from theoretical models for the masses of nuclides, like the FRDM of Möller et al. and the HFB2 of Pearson et al. We focus in particular on the proton separation energies for nuclides that are involved in the rp-process (29<Z<40) but they have not yet been studied experimentally.

2020 ◽  
Vol 15 ◽  
pp. 258
Author(s):  
S. Athanasopoulos ◽  
E. Mavrommatis ◽  
K. A. Gernoth ◽  
J. W. Clark

We evaluate the location of the proton drip line in the regions 31≤Z≤49 and 73≤Z≤91 based on the one- and two-proton separation energies predicted by our latest Hybrid Mass Model. The latter is constructed by complementing the mass-excess values ΔM predicted by the Finite Range Droplet Model (FRDM) of Moeller et al. with a neural network model trained to predict the differences ΔMexp − ΔMFRDM between these values and the experimental mass-excess values published in the 2003 Atomic Mass Evaluation AME03.


2014 ◽  
Vol 6 (1) ◽  
pp. 1032-1035 ◽  
Author(s):  
Ramzi Suleiman

The research on quasi-luminal neutrinos has sparked several experimental studies for testing the "speed of light limit" hypothesis. Until today, the overall evidence favors the "null" hypothesis, stating that there is no significant difference between the observed velocities of light and neutrinos. Despite numerous theoretical models proposed to explain the neutrinos behavior, no attempt has been undertaken to predict the experimentally produced results. This paper presents a simple novel extension of Newton's mechanics to the domain of relativistic velocities. For a typical neutrino-velocity experiment, the proposed model is utilized to derive a general expression for . Comparison of the model's prediction with results of six neutrino-velocity experiments, conducted by five collaborations, reveals that the model predicts all the reported results with striking accuracy. Because in the proposed model, the direction of the neutrino flight matters, the model's impressive success in accounting for all the tested data, indicates a complete collapse of the Lorentz symmetry principle in situation involving quasi-luminal particles, moving in two opposite directions. This conclusion is support by previous findings, showing that an identical Sagnac effect to the one documented for radial motion, occurs also in linear motion.


2019 ◽  
Vol 62 (6) ◽  
pp. 88-99
Author(s):  
Andrey A. Lukashev

The typology of rationality is one of major issues of modern philosophy. In an attempt to provide a typology to Oriental materials, a researcher faces additional problems. The diversity of the Orient as such poses a major challenge. When we say “Oriental,” we mean several cultures for which we cannot find a common denominator. The concept of “Orient” involves Arabic, Indian, Chinese, Turkish and other cultures, and the only thing they share is that they are “non-Western.” Moreover, even if we focus just on Islamic culture and look into rationality in this context, we have to deal with a conglomerate of various trends, which does not let us define, with full confidence, a common theoretical basis and treat them as a unity. Nevertheless, we have to go on trying to find common directions in thought development, so as to draw conclusions about types of rationality possible in Islamic culture. A basis for such a typology of rationality in the context of the Islamic world was recently suggested in A.V. Smirnov’s logic of sense theory. However, actual empiric material cannot always fit theoretical models, and the cases that do not fit the common scheme are interesting per se. On the one hand, examination of such cases gives an opportunity to specify certain provisions of the theory and, on the other hand, to define the limits of its applicability.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4842
Author(s):  
Waldemar Kamiński

Nowadays, hydrostatic levelling is a widely used method for the vertical displacements’ determinations of objects such as bridges, viaducts, wharfs, tunnels, high buildings, historical buildings, special engineering objects (e.g., synchrotron), sports and entertainment halls. The measurements’ sensors implemented in the hydrostatic levelling systems (HLSs) consist of the reference sensor (RS) and sensors located on the controlled points (CPs). The reference sensor is the one that is placed at the point that (in theoretical assumptions) is not a subject to vertical displacements and the displacements of controlled points are determined according to its height. The hydrostatic levelling rule comes from the Bernoulli’s law. While using the Bernoulli’s principle in hydrostatic levelling, the following components have to be taken into account: atmospheric pressure, force of gravity, density of liquid used in sensors places at CPs. The parameters mentioned above are determined with some mean errors that influence on the accuracy assessment of vertical displacements. In the subject’s literature, there are some works describing the individual accuracy analyses of the components mentioned above. In this paper, the author proposes the concept of comprehensive determination of mean error of vertical displacement (of each CPs), calculated from the mean errors’ values of components dedicated for specific HLS. The formulas of covariances’ matrix were derived and they enable to make the accuracy assessment of the calculations’ results. The author also presented the subject of modelling of vertical displacements’ gained values. The dependences, enabling to conduct the statistic tests of received model’s parameters, were implemented. The conducted tests make it possible to verify the correctness of used theoretical models of the examined object treated as the rigid body. The practical analyses were conducted for two simulated variants of sensors’ connections in HLS. Variant no. I is the sensors’ serial connection. Variant no. II relies on the connection of each CPs with the reference sensor. The calculations’ results show that more detailed value estimations of the vertical displacements can be obtained using variant no. II.


2021 ◽  
Vol 11 (8) ◽  
pp. 3563
Author(s):  
Martin Klimo ◽  
Peter Lukáč ◽  
Peter Tarábek

One-hot encoding is the prevalent method used in neural networks to represent multi-class categorical data. Its success stems from its ease of use and interpretability as a probability distribution when accompanied by a softmax activation function. However, one-hot encoding leads to very high dimensional vector representations when the categorical data’s cardinality is high. The Hamming distance in one-hot encoding is equal to two from the coding theory perspective, which does not allow detection or error-correcting capabilities. Binary coding provides more possibilities for encoding categorical data into the output codes, which mitigates the limitations of the one-hot encoding mentioned above. We propose a novel method based on Zadeh fuzzy logic to train binary output codes holistically. We study linear block codes for their possibility of separating class information from the checksum part of the codeword, showing their ability not only to detect recognition errors by calculating non-zero syndrome, but also to evaluate the truth-value of the decision. Experimental results show that the proposed approach achieves similar results as one-hot encoding with a softmax function in terms of accuracy, reliability, and out-of-distribution performance. It suggests a good foundation for future applications, mainly classification tasks with a high number of classes.


2011 ◽  
Vol 41 (11) ◽  
pp. 2155-2167 ◽  
Author(s):  
Xavier Sanchez ◽  
Elena Roget ◽  
Jesus Planella ◽  
Francesc Forcat

Abstract The theoretical models of Batchelor and Kraichnan, which account for the smallest scales of a scalar field passively advected by a turbulent fluid (Prandtl &gt; 1), have been validated using shear and temperature profiles measured with a microstructure profiler in a lake. The value of the rate of dissipation of turbulent kinetic energy ɛ has been computed by fitting the shear spectra to the Panchev and Kesich theoretical model and the one-dimensional spectra of the temperature gradient, once ɛ is known, to the Batchelor and Kraichnan models and from it determining the value of the turbulent parameter q. The goodness of the fit between the spectra corresponding to these models and the measured data shows a very clear dependence on the degree of isotropy, which is estimated by the Cox number. The Kraichnan model adjusts better to the measured data than the Batchelor model, and the values of the turbulent parameter that better fit the experimental data are qB = 4.4 ± 0.8 and qK = 7.9 ± 2.5 for Batchelor and Kraichnan, respectively, when Cox ≥ 50. Once the turbulent parameter is fixed, a comparison of the value of ɛ determined from fitting the thermal gradient spectra to the value obtained after fitting the shear spectra shows that the Kraichnan model gives a very good estimate of the dissipation, which the Batchelor model underestimates.


2019 ◽  
Vol 24 (1-2) ◽  
pp. 108-117
Author(s):  
Khoma V.V. ◽  
◽  
Khoma Y.V. ◽  
Khoma P.P. ◽  
Sabodashko D.V. ◽  
...  

A novel method for ECG signal outlier processing based on autoencoder neural networks is presented in the article. Typically, heartbeats with serious waveform distortions are treated as outliers and are skipped from the authentication pipeline. The main idea of the paper is to correct these waveform distortions rather them in order to provide the system with better statistical base. During the experiments, the optimum autoencoder architecture was selected. An open Physionet ECGID database was used to verify the proposed method. The results of the studies were compared with previous studies that considered the correction of anomalies based on a statistical approach. On the one hand, the autoencoder shows slightly lower accuracy than the statistical method, but it greatly simplifies the construction of biometric identification systems, since it does not require precise tuning of hyperparameters.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Viktor Prokop ◽  
Jan Stejskal ◽  
Beata Mikusova Merickova ◽  
Samuel Amponsah Odei

PurposeThe purpose of this study is to introduce innovative ideas into the treatment of the radical and incremental innovations and to fill the research gap by using: (1) methods that can perform complicated tasks and solve complex problems leading in creation of radical and incremental innovation and (2) a broad sample of firms across countries. The authors’ ambition is to contribute to the scientific knowledge by producing evidence about the novel usage of artificial neural network techniques for measuring European firms' innovation activities appearing in black boxes of innovation processes.Design/methodology/approachIn this study, the authors incorporate an international context into Chesbrough's open innovation (OI) theory and, on the one hand, support the hypothesis that European radical innovators benefit more from foreign cooperation than incremental innovators. On the other hand, the results of the analyses show that European incremental innovators rely on domestic cooperation supported by cooperation with foreign public research institutes. Moreover, the use of decision trees (DT) allows the authors to reveal specific patterns of successful innovators emerging within the hidden layers of neural networks.FindingsThe authors prove that radical European innovators using either internal or external R&D strategies, while the combinations of these strategies do not bring successful innovation outputs. In contrast, European incremental innovators benefit from various internal R&D processes in which engagement in design activities plays a crucial role.Originality/valueThe authors introduce innovative ideas into the treatment of hidden innovation processes and measuring the innovation performance (affected by domestic or international cooperation) of European firms. The approach places emphasis on the novelty of innovation and the issue of international cooperation in the era of OI by designing the framework using a combination of artificial neural networks and DT.


2021 ◽  
pp. 14-22
Author(s):  
G. N. KAMYSHOVA ◽  

The purpose of the study is to develop new scientific approaches to improve the efficiency of irrigation machines. Modern digital technologies allow the collection of data, their analysis and operational management of equipment and technological processes, often in real time. All this allows, on the one hand, applying new approaches to modeling technical systems and processes (the so-called “data-driven models”), on the other hand, it requires the development of fundamentally new models, which will be based on the methods of artificial intelligence (artificial neural networks, fuzzy logic, machine learning algorithms and etc.).The analysis of the tracks and the actual speeds of the irrigation machines in real time showed their significant deviations in the range from the specified speed, which leads to a deterioration in the irrigation parameters. We have developed an irrigation machine’s control model based on predictive control approaches and the theory of artificial neural networks. Application of the model makes it possible to implement control algorithms with predicting the response of the irrigation machine to the control signal. A diagram of an algorithm for constructing predictive control, a structure of a neuroregulator and tools for its synthesis using modern software are proposed. The versatility of the model makes it possible to use it both to improve the efficiency of management of existing irrigation machines and to develop new ones with integrated intelligent control systems.


Sign in / Sign up

Export Citation Format

Share Document