scholarly journals Distribution of dissolved inorganic carbon and related parameters in the Thermaikos Gulf (Eastern Mediterranean)

2006 ◽  
Vol 7 (1) ◽  
pp. 63 ◽  
Author(s):  
E. KRASAKOPOULOU ◽  
CH. ANAGNOSTOU ◽  
E. SOUVERMEZOGLOU ◽  
E. PAPATHANASSIOU ◽  
S. RAPSOMANIKIS

Data on the distribution of dissolved inorganic carbon (measured as TCO2) and related parameters in the Thermaikos Gulf were obtained during May 1997. High TCO2 concentrations were recorded close to the bottom, especially in the northern part of the gulf, as a result of organic matter remineralisation. The positive relatively good correlation between TCO2 and both apparent oxygen utilisation (AOU) and phosphate at the last sampling depth confi rmed the regenerative origin of a large proportion of TCO2. The comparatively conservative behaviour of alkalinity, together with the relatively low value of the homogenous buffer factor β (β = ∂lnfCO2/∂lnTCO2) revealed that calcifi cation or carbonate dissolution takes place on a very small scale, simultaneously with the organic carbon production. The correlations between fCO2 and chlorophyll α, as well as AOU and the surface temperature, revealed that the carbon dioxide fi xation through the biological activity is the principal factor that modulates the variability of fCO2. A rough first estimate of the magnitude of the air-sea CO2 exchange and the potential role of the Thermaikos Gulf in the transfer of atmospheric CO2 was also obtained. The results showed that during May 1997, the Thermaikos Gulf acted as a weak sink for atmospheric CO2 at a rate of -0.60 - -1.43 mmol m-2 d-1, depending on which formula for the gas transfer velocity was used, and in accordance to recent reports regarding other temperate continental shelves. Extensive study of the dissolved inorganic carbon and related parameters, and continuous shipboard measurements of fCO2 a and fCO2 w during all seasons are necessary to safely quantify the role of the Thermaikos Gulf in the context of the coastal margins CO2 dynamics.

2017 ◽  
Author(s):  
Anne Marx ◽  
Marcus Conrad ◽  
Vadym Aizinger ◽  
Alexander Prechtel ◽  
Robert van Geldern ◽  
...  

Abstract. A large portion of terrestrially-derived carbon outgasses as carbon dioxide (CO2) from streams and rivers to the atmosphere. Particularly, the amount of CO2 outgassing from small headwater streams was indicated as highly uncertain. Conservative estimates suggest that they contribute 36 % (i.e., 0.93 petagrams C yr−1) of total CO2 outgassing from all rivers and streams worldwide. In this study, stream pCO2, dissolved inorganic carbon (DIC) and δ13CDIC data were used to determine CO2 outgassing from an acidic headwater stream in the Uhlirska catchment (Czech Republic). This stream drains a catchment with silicate bedrock. The applied stable isotope model is based on the principle, that the 13C / 12C ratio of its sources and the intensity of CO2 outgassing control the isotope ratio of DIC in stream water. It avoids the use of the gas transfer velocity parameter (k) that is highly variable and mostly difficult to constrain. Model results indicate that CO2 outgassing contributed 80 % to the annual stream inorganic carbon loss in the Uhlirska catchment. This translated to a CO2 outgassing rate from the stream of 5.2 t C yr−1 and to 2.9 g C m−2 yr−1, when normalised to the catchment area. Large temporal variations with maximum values during spring snowmelt and summer emphasise the need for investigations at higher temporal resolution. We improved the model uncertainty by incorporating groundwater data to better constrain the isotope compositions of initial DIC. Due to the large global abundance of acidic, humic-rich headwaters, we underline the importance of this integral approach for global applications.


2015 ◽  
Vol 12 (20) ◽  
pp. 6251-6258 ◽  
Author(s):  
K. Watanabe ◽  
T. Kuwae

Abstract. Submerged aquatic vegetation takes up water-column dissolved inorganic carbon (DIC) as a carbon source across its thin cuticle layer. It is expected that marine macrophytes also use atmospheric CO2 when exposed to air during low tide, although assimilation of atmospheric CO2 has never been quantitatively evaluated. Using the radiocarbon isotopic signatures (Δ14C) of the seagrass Zostera marina, DIC and particulate organic carbon (POC), we show quantitatively that Z. marina takes up and assimilates atmospheric modern CO2 in a shallow coastal ecosystem. The Δ14C values of the seagrass (−40 to −10 ‰) were significantly higher than those of aquatic DIC (−46 to −18 ‰), indicating that the seagrass uses a 14C-rich carbon source (atmospheric CO2, +17 ‰). A carbon-source mixing model indicated that the seagrass assimilated 0–40 % (mean, 17 %) of its inorganic carbon as atmospheric CO2. CO2 exchange between the air and the seagrass might be enhanced by the presence of a very thin film of water over the air-exposed leaves during low tide. Our radiocarbon isotope analysis, showing assimilation of atmospheric modern CO2 as an inorganic carbon source, improves our understanding of the role of seagrass meadows in coastal carbon dynamics.


2009 ◽  
Vol 6 (6) ◽  
pp. 1105-1114 ◽  
Author(s):  
M. Ll. Calleja ◽  
C. M. Duarte ◽  
Y. T. Prairie ◽  
S. Agustí ◽  
G. J. Herndl

Abstract. Air-sea CO2 exchange depends on the air-sea CO2 gradient and the gas transfer velocity (k), computed as a function of wind speed. Large discrepancies among relationships predicting k from wind suggest that other processes also contribute significantly to modulate CO2 exchange. Here we report, on the basis of the relationship between the measured gas transfer velocity and the organic carbon concentration at the ocean surface, a significant role of surface organic matter in suppressing air-sea gas exchange, at low and intermediate winds, in the open ocean, confirming previous observations. The potential role of total surface organic matter concentration (TOC) on gas transfer velocity (k) was evaluated by direct measurements of air-sea CO2 fluxes at different wind speeds and locations in the open ocean. According to the results obtained, high surface organic matter contents may lead to lower air-sea CO2 fluxes, for a given air-sea CO2 partial pressure gradient and wind speed below 5 m s−1, compared to that observed at low organic matter contents. We found the bias in calculated gas fluxes resulting from neglecting TOC to co-vary geographically and seasonally with marine productivity. These results support previous evidences that consideration of the role of organic matter in modulating air-sea CO2 exchange may improve flux estimates and help avoid possible bias associated to variability in surface organic concentration across the ocean.


1999 ◽  
Vol 46 (6-7) ◽  
pp. 1473-1496 ◽  
Author(s):  
Lisa A. Miller ◽  
Melissa Chierici ◽  
Truls Johannessen ◽  
Thomas T. Noji ◽  
Francisco Rey ◽  
...  

2018 ◽  
Vol 15 (10) ◽  
pp. 3093-3106 ◽  
Author(s):  
Anne Marx ◽  
Marcus Conrad ◽  
Vadym Aizinger ◽  
Alexander Prechtel ◽  
Robert van Geldern ◽  
...  

Abstract. A large portion of terrestrially derived carbon outgasses as carbon dioxide (CO2) from streams and rivers to the atmosphere. Particularly, the amount of CO2 outgassing from small headwater streams is highly uncertain. Conservative estimates suggest that they contribute 36 % (i.e. 0.93 petagrams (Pg) C yr−1) of total CO2 outgassing from all fluvial ecosystems on the globe. In this study, stream pCO2, dissolved inorganic carbon (DIC), and δ13CDIC data were used to determine CO2 outgassing from an acidic headwater stream in the Uhlířská catchment (Czech Republic). This stream drains a catchment with silicate bedrock. The applied stable isotope model is based on the principle that the 13C ∕ 12C ratio of its sources and the intensity of CO2 outgassing control the isotope ratio of DIC in stream water. It avoids the use of the gas transfer velocity parameter (k), which is highly variable and mostly difficult to constrain. Model results indicate that CO2 outgassing contributed more than 80 % to the annual stream inorganic carbon loss in the Uhlířská catchment. This translated to a CO2 outgassing rate from the stream of 34.9 kg C m−2 yr−1 when normalised to the stream surface area. Large temporal variations with maximum values shortly before spring snowmelt and in summer emphasise the need for investigations at higher temporal resolution. We improved the model uncertainty by incorporating groundwater data to better constrain the isotope compositions of initial DIC. Due to the large global abundance of acidic, humic-rich headwaters, we underline the importance of this integral approach for global applications.


2015 ◽  
Vol 12 (10) ◽  
pp. 7599-7611
Author(s):  
K. Watanabe ◽  
T. Kuwae

Abstract. Submerged aquatic vegetation assimilates dissolved inorganic carbon (DIC) in the water column as a carbon source across its thin cuticle layer. However, it is expected that marine macrophytes also use atmospheric CO2 when exposed to the air during low tide, although assimilation of atmospheric CO2 has never been quantitatively evaluated. Using the radiocarbon isotopic signatures (Δ14C) of the seagrass Zostera marina and DIC, we show quantitatively that Z. marina takes up and assimilates atmospheric modern CO2 in a shallow coastal ecosystem. The Δ14C values of the seagrass (−36 to −8‰) were significantly higher than those of aquatic DIC (−45 to −18‰), indicating that the seagrass uses a 14C-rich carbon source (atmospheric CO2, +17‰). A carbon-source mixing model indicated that the seagrass assimilated ~ 46% (mean: 22%) of its inorganic carbon as atmospheric CO2. CO2 exchange between the air and the seagrass may be enhanced by the presence of a very thin water film over the air-exposed leaves during low tide. Our radiocarbon isotope analysis, showing assimilation of atmospheric modern CO2 as an inorganic carbon source, offers better understanding of the role of seagrass meadows in coastal carbon dynamics.


2008 ◽  
Vol 5 (6) ◽  
pp. 4209-4233
Author(s):  
M. Ll. Calleja ◽  
C. M. Duarte ◽  
Y. T. Prairie ◽  
S. Agustí ◽  
G. J. Herndl

Abstract. Air-sea CO2 exchange depends on the air-sea CO2 gradient and the gas transfer velocity (k), computed as a simple function of wind speed. Large discrepancies among relationships predicting k from wind suggest that other processes may also contribute significantly to modulate CO2 exchange. Here we report, on the basis of the relationship between the measured gas transfer velocity and the ocean surface organic carbon concentration at the ocean surface, a significant role of surface organic matter in suppressing air-sea gas exchange, at low and intermediate winds, in the open ocean. The potential role of total surface organic matter concentration (TOC) on gas transfer velocity (k) was evaluated by direct measurements of air-sea CO2 fluxes at different wind speeds and locations in the open ocean. According to the results obtained, high surface organic matter contents may lead to lower air-sea CO2 fluxes, for a given air-sea CO2 partial pressure gradient and wind speed below 5 m s−1, compared to that observed at low organic matter contents. We found the bias in calculated gas fluxes resulting from neglecting TOC to co-vary geographically and seasonally with marine productivity. These findings suggest that consideration of the role of organic matter in modulating air-sea CO2 exchange can improve flux estimates and help avoid possible bias associated to variability in surface organic concentration across the ocean.


2021 ◽  
Author(s):  
Sina Bold ◽  
Justus E.E. van Beusekom ◽  
Yoana G. Voynova ◽  
Marius Cysewski ◽  
Bryce Van Dam ◽  
...  

<p>Estuaries are crucial in transforming matter fluxes from land to sea. To better understand and quantify these processes and respective fluxes, it is important to determine the input into an estuary accurately. To allow for such studies in the Elbe estuary in Germany, a state-of-the-art research platform is currently being set-up just upstream of the weir in Geesthacht at the entrance of the estuary. Here, we report on small-scale spatial dynamics of organic matter and associated processes from several cross and longitudinal profiles around the planned location and the implications for the set-up of the aforementioned research platform.</p><p>Based on preliminary data obtained in August 2020 during a period of relatively low discharge, we present the following results: (1) In three cross profiles along a 10 km transect of the Elbe upstream of the weir, we observed considerable small-scale gradients regarding currents and various biogeochemical parameters. In comparison to the fairway, water from the riverbanks was depleted in suspended particulate matter, chlorophyll a, dissolved oxygen, and nitrate, and enhanced in ammonium, phosphate and silicate, as well as total alkalinity and dissolved inorganic carbon paralleled by decreasing pH. This suggests that in the summer, organic matter is deposited and remineralised at the riverbanks, resulting in the release of ammonium, phosphate and silicate, and in the removal of nitrate, presumably by denitrification. (2) Along the 10 km transect towards the weir, we observed that concentrations of suspended particulate matter, chlorophyll a, dissolved oxygen, nitrate and pH were decreasing. In contrast, we found that ammonium, phosphate and silicate, total alkalinity and dissolved inorganic carbon increased towards the weir. This suggests an increased sedimentation and subsequent remineralisation due to the reduced flow velocities in front of the weir. (3) An analysis of a 10-year time series from the weir supports this by showing higher ammonium concentrations when discharges were relatively low. The implications of these findings for the set-up of the research platform in this area, as well as for optimising estimates of budgets are discussed. The research platform will contribute to understand further such variations in biogeochemical parameters at the entrance of the Elbe estuary over time.</p><p>The research platform is set-up in cooperation with the Helmholtz initiative MOSES (“Modular Observation Solutions for Earth Systems“) and will be incorporated in the Elbe-North Sea Supersite of DANUBIUS-RI (“International Centre for Advanced Studies on River-Sea Systems“). Funding is provided by European Regional Development Funds, the federal state of Schleswig-Holstein, the Helmholtz Association and the Helmholtz-Zentrum Geesthacht. The research platform, planned to be operational in autumn 2021, will also be open for users e.g. to develop and test new methods and technologies. Data will be made available through the “Helmholtz Coastal Data Centre” (HCDC).</p>


Sign in / Sign up

Export Citation Format

Share Document