scholarly journals Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

F1000Research ◽  
2012 ◽  
Vol 1 ◽  
pp. 69 ◽  
Author(s):  
Miriam Matamales

Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Filip Rozpędek ◽  
Kyungjoo Noh ◽  
Qian Xu ◽  
Saikat Guha ◽  
Liang Jiang

AbstractWe propose an architecture of quantum-error-correction-based quantum repeaters that combines techniques used in discrete- and continuous-variable quantum information. Specifically, we propose to encode the transmitted qubits in a concatenated code consisting of two levels. On the first level we use a continuous-variable GKP code encoding the qubit in a single bosonic mode. On the second level we use a small discrete-variable code. Such an architecture has two important features. Firstly, errors on each of the two levels are corrected in repeaters of two different types. This enables for achieving performance needed in practical scenarios with a reduced cost with respect to an architecture for which all repeaters are the same. Secondly, the use of continuous-variable GKP code on the lower level generates additional analog information which enhances the error-correcting capabilities of the second-level code such that long-distance communication becomes possible with encodings consisting of only four or seven optical modes.


2002 ◽  
Vol 70 (8) ◽  
pp. 4692-4696 ◽  
Author(s):  
Mee-Kyung Kim ◽  
Seung-Yong Seong ◽  
Ju-Young Seoh ◽  
Tae-Hee Han ◽  
Hyeon-Je Song ◽  
...  

ABSTRACT Orientia tsutsugamushi shows both pro- and antiapoptotic activities in infected vertebrate cells. Apoptosis of THP-1 cells induced by beauvericin was inhibited by O. tsutsugamushi infection. Beauvericin-induced calcium redistribution was significantly reduced and retarded in cells infected with O. tsutsugamushi. Antiapoptotic activities of O. tsutsugamushi in infected cells are most probably due to inhibition of the increase in the cytosolic calcium concentration.


1999 ◽  
Vol 09 (01n02) ◽  
pp. 125-132
Author(s):  
GEUN-TAEK RYU ◽  
DAE-SUNG KIM ◽  
DAE-YOUNG LEE ◽  
SUNG-HWAN HAN ◽  
HYEON-DEOK BAE

The choice of the adaptive gain is important to the performance of LMS-based adaptive filters. Depending on application areas, the realization structure of the filters is also important. This letter presents an adaptive lattice algorithm which adjusts the adaptive gain of LMS using fuzzy if-then rules determined by matching input and output variables during adaptation procedure. In each lattice filter stage, this filter adjusts the adaptive gain as the output of the fuzzy logic which has two input variables, normalized squared forward prediction error and one step previous adaptive gain. The proposed algorithm is applied to echo canceling problem of long distance communication channel. The simulation results are compared with NLMS on TDL and lattice structures.


Parasitology ◽  
2008 ◽  
Vol 135 (12) ◽  
pp. 1355-1362 ◽  
Author(s):  
I. SIDÉN-KIAMOS ◽  
C. LOUIS

SUMMARYOokinetes are the motile and invasive stages of Plasmodium parasites in the mosquito host. Here we explore the role of intracellular Ca2+ in ookinete survival and motility as well as in the formation of oocysts in vitro in the rodent malaria parasite Plasmodium berghei. Treatment with the Ca2+ ionophore A23187 induced death of the parasite, an effect that could be prevented if the ookinetes were co-incubated with insect cells before incubation with the ionophore. Treatment with the intracellular calcium chelator BAPTA/AM resulted in increased formation of oocysts in vitro. Calcium imaging in the ookinete using fluorescent calcium indicators revealed that the purified ookinetes have an intracellular calcium concentration in the range of 100 nm. Intracellular calcium levels decreased substantially when the ookinetes were incubated with insect cells and their motility was concomitantly increased. Our results suggest a pleiotropic role for intracellular calcium in the ookinete.


Sign in / Sign up

Export Citation Format

Share Document