scholarly journals Null effect of circulating sphingomyelins on risk for breast cancer: a Mendelian randomization report using Breast Cancer Association Consortium (BCAC) data.

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 2119
Author(s):  
Charleen D. Adams

Background: Changes in cellular metabolism are a hallmark of cancer and are linked with sphingolipid synthesis. Due to immense interest in how sphingolipids influence chemoresistance, more is known about the impact of sphingolipids during cancer treatment and progression than about the potential role of sphingolipids in the induction of tumors in humans. Methods: Because estrogen triggers sphingolipid signaling cascades, the causal role of circulating levels of sphingomyelin (a type of sphingolipid) on breast cancer was investigated with a well-powered Mendelian randomization design. Results: The results reveal a null effect (OR = 0.94; 95% CI = 0.85, 1.05; P = 0.30). Conclusion: Despite the role sphingomyelins play during chemoresistance and cancer progression, circulating sphingomyelins do not appear to initiate or protect from breast cancer. This finding comprises the first causal report in humans that sphingomyelins on breast cancer initiation is null. Future investigations of risk in other cancer types are needed to further explore the potential role of sphingolipid biology in cancer etiology.

2019 ◽  
Author(s):  
Charleen D. Adams

AbstractBackgroundChanges in cellular metabolism are a hallmark of cancer and are linked with sphingolipid synthesis. Due to immense interest in how sphingolipids influence chemoresistance, more is known about the impact of sphingolipids during cancer treatment and progression than about the potential role of sphingolipids in the induction of tumors in humans.MethodsBecause estrogen triggers sphingolipid signaling cascades, the causal role of circulating levels of sphingomyelin (a type of sphingolipid) on breast cancer was investigated with a well-powered Mendelian randomization design.ResultsThe results reveal a null effect (OR = 0.94; 95% CI = 0.85, 1.05; P = 0.30).ConclusionDespite the role sphingomyelins play during chemoresistance and cancer progression, circulating sphingomyelins do not appear to initiate or protect from breast cancer.ImpactThis finding comprises the first causal report in humans that sphingomyelins on breast cancer initiation is null. Future investigations of risk in other cancer types are needed to further explore the potential role of sphingolipid biology in cancer etiology.


2020 ◽  
Vol 22 (1) ◽  
pp. 27
Author(s):  
Ilaria Plantamura ◽  
Alessandra Cataldo ◽  
Giulia Cosentino ◽  
Marilena V. Iorio

Despite its controversial roles in different cancer types, miR-205 has been mainly described as an oncosuppressive microRNA (miRNA), with some contrasting results, in breast cancer. The role of miR-205 in the occurrence or progression of breast cancer has been extensively studied since the first evidence of its aberrant expression in tumor tissues versus normal counterparts. To date, it is known that the expression of miR-205 in the different subtypes of breast cancer is decreasing from the less aggressive subtype, estrogen receptor/progesterone receptor positive breast cancer, to the more aggressive, triple negative breast cancer, influencing metastasis capability, response to therapy and patient survival. In this review, we summarize the most important discoveries that have highlighted the functional role of this miRNA in breast cancer initiation and progression, in stemness maintenance, in the tumor microenvironment, its potential role as a biomarker and its relevance in normal breast physiology—the still open questions. Finally, emerging evidence reveals the role of some lncRNAs in breast cancer progression as sponges of miR-205. Here, we also reviewed the studies in this field.


2021 ◽  
Vol 22 (5) ◽  
pp. 2267
Author(s):  
Roni H. G. Wright ◽  
Miguel Beato

Despite global research efforts, breast cancer remains the leading cause of cancer death in women worldwide. The majority of these deaths are due to metastasis occurring years after the initial treatment of the primary tumor and occurs at a higher frequency in hormone receptor-positive (Estrogen and Progesterone; HR+) breast cancers. We have previously described the role of NUDT5 (Nudix-linked to moiety X-5) in HR+ breast cancer progression, specifically with regards to the growth of breast cancer stem cells (BCSCs). BCSCs are known to be the initiators of epithelial-to-mesenchyme transition (EMT), metastatic colonization, and growth. Therefore, a greater understanding of the proteins and signaling pathways involved in the metastatic process may open the door for therapeutic opportunities. In this review, we discuss the role of NUDT5 and other members of the NUDT family of enzymes in breast and other cancer types. We highlight the use of global omics data based on our recent phosphoproteomic analysis of progestin signaling pathways in breast cancer cells and how this experimental approach provides insight into novel crosstalk mechanisms for stratification and drug discovery projects aiming to treat patients with aggressive cancer.


2021 ◽  
Author(s):  
Marie Mclaughlin ◽  
Geraint Florida-James ◽  
Mark Ross

Breast cancer chemotherapy, although very potent against tumour tissue, results in significant cardiovascular toxicity. The focus of research in this area has been predominantly towards cardiotoxicity. There is limited evidence detailing the impact of such treatment on the vasculature despite its central importance within the cardiovascular system and resultant detrimental effects of damage and dysfunction. This review highlights the impact of chemotherapy for breast cancer on the vascular endothelium. We consider the most likely mechanisms of endothelial toxicity to be through direct damage and dysfunction of the endothelium. There are sharp consequences of these detrimental effects as they can lead to cardiovascular disease. However, there is potential for exercise to alleviate some of the vascular toxicity of chemotherapy, and the evidence for this is provided. The potential role of exercise in protecting against vascular toxicity is explained, highlighting the recent in-human and animal model exercise interventions. Lastly, the mediating mechanisms of exercise protection of endothelial health is discussed, focusing on the importance of exercise for endothelial health, function, repair, inflammation and hyperlipidaemia, angiogenesis, and vascular remodelling. These are all important counteracting measures against chemotherapy-induced toxicity and are discussed in detail.


MicroRNA ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Kontomanolis N. Emmanuel ◽  
Fasoulakis Zacharias ◽  
Papamanolis Valentinos ◽  
Koliantzaki Sofia ◽  
Dimopoulos Georgios ◽  
...  

Objective: The study aims to review the recent data considering the expression profile and the role of microRNAs in breast tumorigenesis, and their impact on -the vital for breast cancer progression- angiogenesis.Methods:PubMed was searched for studies focused on data that associate microRNA with breast cancer, using the terms ''breast”, “mammary gland”, “neoplasia'', “angiogenesis” and ''microRNA'' between 1997-2018.Results:Aberrant expression of several circulating and tissue miRNAs is observed in human breast neoplasms with the deregulation of several miRNAs having a major participation in breast cancer progression. Angiogenesis seems to be directly affected by either overexpression or down regulation of many miRNAs, defining the overall prognostic rates. Many miRNAs differentially expressed in breast cancer that reveal a key role in suppression - progression and metastasis of breast cancer along with the contribution of the EGF, TNF-a and EGF cytokines.ConclusionAngiogenesis has proven to be vital for tumor development and metastasis while microRNAs are proposed to have multiple biological roles, including participation in immunosuppressive, immunomodulatory and recent studies reveal their implication in angiogenesis and its possible use as prognostic factors in cancer Even though larger studies are needed in order to reach safe conclusions, important steps are made that reveal the connection of serum microRNA expression to the angiogenic course of breast cancer, while miRNAs could be potential prognostic factors for the different breast cancer types.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Emmanuel N. Kontomanolis ◽  
Sofia Kalagasidou ◽  
Stamatia Pouliliou ◽  
Xanthoula Anthoulaki ◽  
Nikolaos Georgiou ◽  
...  

Objective. Notch signaling pathway is a vital parameter of the mammalian vascular system. In this review, the authors summarize the current knowledge about the impact of the Notch signaling pathway in breast cancer progression and the therapeutic role of Notch’s inhibition.Methods. The available literature in MEDLINE, PubMed, and Scopus, regarding the role of the Notch pathway in breast cancer progression was searched for related articles from about 1973 to 2017 including terms such as “Notch,” “Breast Cancer,” and “Angiogenesis.”Results. Notch signaling controls the differentiation of breast epithelial cells during normal development. Studies confirm that the Notch pathway has a major participation in breast cancer progression through overexpression and/or abnormal genetic type expression of the notch receptors and ligands that determine angiogenesis. The cross-talk of Notch and estrogens, the effect of Notch in breast cancer stem cells formation, and the dependable Notch overexpression during breast tumorigenesis have been studied enough and undoubtedly linked to breast cancer development. The already applied therapeutic inhibition of Notch for breast cancer can drastically change the course of the disease.Conclusion. Current data prove that Notch pathway has a major participation and multiple roles during breast tumor progression. Inhibition of Notch receptors and ligands provides innovative therapeutic results and could become the therapy of choice in the next few years, even though further research is needed to reach safe conclusions.


Sign in / Sign up

Export Citation Format

Share Document