scholarly journals Associations between genetic factors in individualization of visual perception and components of event-related potentials during assessment of emotional visual stimuli (scenes) with distinct second-order features

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1010
Author(s):  
Pavel N. Ermakov ◽  
Elena V. Vorobyeva ◽  
Ekaterina M. Kovsh ◽  
Alexander S. Stoletniy ◽  
Magomed M. Dalgatov ◽  
...  

Background: The aim of this paper is to investigate the associations between polymorphisms in the BDNF, COMT, and HTR2A genes with peculiarity of visual perception. In particular, how the carriers of different genotypes of Indicated genes emotionally evaluating visual scenes with distinct second-order features (images modulated by contrast) and how corresponding process is reflected in event-related brain activity (ERP). Methods: The study involved students who underwent PCR-based genetic analysis with the release of BDNF, COMT, and HTR2A genotypes. Participants were asked to emotionally assesse the specific stimuli – visual scenes that were generated from contrast modulations. At the same time the EEG were recorded using a 128-electrodes system. The average frequency of responses and ERPs for different emotional evaluations (negative, neutral and positive) were analyzed. Results: The study showed the BDNF Val/Val polymorphism was associated with the increase in the P2 amplitude in the occipital regions compared to the Val/Met genotype regardless of emotional evaluation. The COMT Met/Met genotype polymorphism associated with the increase of N170 negativity in the occipital regions during evaluation task. The HTR2A polymorphism A/A associated with increase in the P1 amplitude when positive or negative assessment were chosen, and decrease of later positive peak when neutral evaluation was chosen. Conclusions: The results suggested that emotional evaluation and recognition of visual scenes with distinct second-order features, as well as various strategies for processing visual information, reflected in amplitude and latency of different ERPs components and associated with the different genotypes of BDNF, COMT, and HTR2A genes. The indicated interconnections can act as genetic basis of individualize the mechanisms of visual perception.

2021 ◽  
Author(s):  
Sharif I. Kronemer ◽  
Mark Aksen ◽  
Julia Ding ◽  
Jun Hwan Ryu ◽  
Qilong Xin ◽  
...  

AbstractConsciousness is not explained by a single mechanism, rather it involves multiple specialized neural systems overlapping in space and time. We hypothesize that synergistic, large-scale subcortical and cortical attention and signal processing networks encode conscious experiences. To identify brain activity in conscious perception without overt report, we classified visual stimuli as perceived or not using eye measurements. Report-independent event-related potentials and functional magnetic resonance imaging (fMRI) signals both occurred at early times after stimuli. Direct recordings revealed a novel thalamic awareness potential linked to conscious visual perception based on report. fMRI showed thalamic and cortical detection, arousal, attentional salience, task-positive, and default mode networks were involved independent of overt report. These findings identify a specific sequence of neural mechanisms in human conscious visual perception.One-Sentence SummaryHuman conscious visual perception engages large-scale subcortical and cortical networks even without overt report.


2009 ◽  
Vol 23 (2) ◽  
pp. 63-76 ◽  
Author(s):  
Silke Paulmann ◽  
Sarah Jessen ◽  
Sonja A. Kotz

The multimodal nature of human communication has been well established. Yet few empirical studies have systematically examined the widely held belief that this form of perception is facilitated in comparison to unimodal or bimodal perception. In the current experiment we first explored the processing of unimodally presented facial expressions. Furthermore, auditory (prosodic and/or lexical-semantic) information was presented together with the visual information to investigate the processing of bimodal (facial and prosodic cues) and multimodal (facial, lexic, and prosodic cues) human communication. Participants engaged in an identity identification task, while event-related potentials (ERPs) were being recorded to examine early processing mechanisms as reflected in the P200 and N300 component. While the former component has repeatedly been linked to physical property stimulus processing, the latter has been linked to more evaluative “meaning-related” processing. A direct relationship between P200 and N300 amplitude and the number of information channels present was found. The multimodal-channel condition elicited the smallest amplitude in the P200 and N300 components, followed by an increased amplitude in each component for the bimodal-channel condition. The largest amplitude was observed for the unimodal condition. These data suggest that multimodal information induces clear facilitation in comparison to unimodal or bimodal information. The advantage of multimodal perception as reflected in the P200 and N300 components may thus reflect one of the mechanisms allowing for fast and accurate information processing in human communication.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Qian Wan ◽  
Xiaohe Li ◽  
Yachi Zhang ◽  
Shasha Song ◽  
Qing Ke

2015 ◽  
Vol 27 (3) ◽  
pp. 492-508 ◽  
Author(s):  
Nicholas E. Myers ◽  
Lena Walther ◽  
George Wallis ◽  
Mark G. Stokes ◽  
Anna C. Nobre

Working memory (WM) is strongly influenced by attention. In visual WM tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar frontoparietal control network, the two are likely to exhibit some processing differences, because precues invite anticipation of upcoming information whereas retrocues may guide prioritization, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual WM task designed to permit a direct comparison between cueing conditions. We found marked differences in ERP profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha-band (8–14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that, whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saugat Bhattacharyya ◽  
Davide Valeriani ◽  
Caterina Cinel ◽  
Luca Citi ◽  
Riccardo Poli

AbstractIn this paper we present, and test in two realistic environments, collaborative Brain-Computer Interfaces (cBCIs) that can significantly increase both the speed and the accuracy of perceptual group decision-making. The key distinguishing features of this work are: (1) our cBCIs combine behavioural, physiological and neural data in such a way as to be able to provide a group decision at any time after the quickest team member casts their vote, but the quality of a cBCI-assisted decision improves monotonically the longer the group decision can wait; (2) we apply our cBCIs to two realistic scenarios of military relevance (patrolling a dark corridor and manning an outpost at night where users need to identify any unidentified characters that appear) in which decisions are based on information conveyed through video feeds; and (3) our cBCIs exploit Event-Related Potentials (ERPs) elicited in brain activity by the appearance of potential threats but, uniquely, the appearance time is estimated automatically by the system (rather than being unrealistically provided to it). As a result of these elements, in the two test environments, groups assisted by our cBCIs make both more accurate and faster decisions than when individual decisions are integrated in more traditional manners.


1991 ◽  
Vol 3 (2) ◽  
pp. 151-165 ◽  
Author(s):  
Helen Neville ◽  
Janet L. Nicol ◽  
Andrew Barss ◽  
Kenneth I. Forster ◽  
Merrill F. Garrett

Theoretical considerations and diverse empirical data from clinical, psycholinguistic, and developmental studies suggest that language comprehension processes are decomposable into separate subsystems, including distinct systems for semantic and grammatical processing. Here we report that event-related potentials (ERPs) to syntactically well-formed but semantically anomalous sentences produced a pattern of brain activity that is distinct in timing and distribution from the patterns elicited by syntactically deviant sentences, and further, that different types of syntactic deviance produced distinct ERP patterns. Forty right-handed young adults read sentences presented at 2 words/sec while ERPs were recorded from over several positions between and within the hemispheres. Half of the sentences were semantically and grammatically acceptable and were controls for the remainder, which contained sentence medial words that violated (1) semantic expectations, (2) phrase structure rules, or (3) WH-movement constraints on Specificity and (4) Subjacency. As in prior research, the semantic anomalies produced a negative potential, N400, that was bilaterally distributed and was largest over posterior regions. The phrase structure violations enhanced the N125 response over anterior regions of the left hemisphere, and elicited a negative response (300-500 msec) over temporal and parietal regions of the left hemisphere. Violations of Specificity constraints produced a slow negative potential, evident by 125 msec, that was also largest over anterior regions of the left hemisphere. Violations of Subjacency constraints elicited a broadly and symmetrically distributed positivity that onset around 200 msec. The distinct timing and distribution of these effects provide biological support for theories that distinguish between these types of grammatical rules and constraints and more generally for the proposal that semantic and grammatical processes are distinct subsystems within the language faculty.


1999 ◽  
Vol 11 (6) ◽  
pp. 598-609 ◽  
Author(s):  
Charan Ranganath ◽  
Ken A. Paller

Previous neuropsychological and neuroimaging results have implicated the prefrontal cortex in memory retrieval, although its precise role is unclear. In the present study, we examined patterns of brain electrical activity during retrieval of episodic and semantic memories. In the episodic retrieval task, participants retrieved autobiographical memories in response to event cues. In the semantic retrieval task, participants generated exemplars in response to category cues. Novel sounds presented intermittently during memory retrieval elicited a series of brain potentials including one identifiable as the P3a potential. Based on prior research linking P3a with novelty detection and with the frontal lobes, we predicted that P3a would be reduced to the extent that novelty detection and memory retrieval interfere with each other. Results during episodic and semantic retrieval tasks were compared to results during a task in which subjects attended to the auditory stimuli. P3a amplitudes were reduced during episodic retrieval, particularly at right lateral frontal scalp locations. A similar but less lateralized pattern of frontal P3a reduction was observed during semantic retrieval. These findings support the notion that the right prefrontal cortex is engaged in the service of memory retrieval, particularly for episodic memories.


Sign in / Sign up

Export Citation Format

Share Document