scholarly journals A protocol to examine vision and gait in Parkinson’s disease: impact of cognition and response to visual cues

F1000Research ◽  
2016 ◽  
Vol 4 ◽  
pp. 1379 ◽  
Author(s):  
Samuel Stuart ◽  
Brook Galna ◽  
Sue Lord ◽  
Lynn Rochester

BackgroundCognitive and visual impairments are common in Parkinson’s disease (PD) and contribute to gait deficit and falls. To date, cognition and vision in gait in PD have been assessed separately. Impact of both functions (which we term ‘visuo-cognition’) on gait however is likely interactive and can be tested using visual sampling (specifically saccadic eye movements) to provide an online behavioural measure of performance. Although experiments using static paradigms show saccadic impairment in PD, few studies have quantified visual sampling during dynamic motor tasks such as gait.This article describes a protocol developed for testing visuo-cognition during gait in order to examine the: 1) independent roles of cognition and vision in gait in PD, 2) interaction between both functions, and 3) role of visuo-cognition in gait in PD.Methods Two groups of older adults (≥50 years old) were recruited; non-demented people with PD (n=60) and age-matched controls (n=40). Participants attended one session and a sub-group (n=25) attended two further sessions in order to establish mobile eye-tracker reliability. Participants walked in a gait laboratory under different attentional (single and dual task), environmental (walk straight, through a door and turning), and cueing (no visual cues and visual cues) conditions. Visual sampling was recorded using synchronised mobile eye-tracker and electrooculography systems, and gait was measured using 3D motion analysis.Discussion This exploratory study examined visuo-cognitive processes and their impact on gait in PD. Improved understanding of the influence of cognitive and visual functions on visual sampling during gait and gait in PD will assist in development of interventions to improve gait and reduce falls risk. This study will also help establish robust mobile eye-tracking methods in older adults and people with PD.

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1379 ◽  
Author(s):  
Samuel Stuart ◽  
Brook Galna ◽  
Sue Lord ◽  
Lynn Rochester

BackgroundCognitive and visual impairments are common in Parkinson’s disease (PD) and contribute to gait deficit and falls. To date, cognition and vision in gait in PD have been assessed separately. Impact of both functions (which we term ‘visuo-cognition’) on gait however is likely interactive and can be tested using visual sampling (specifically saccadic eye movements) to provide an online behavioural measure of performance. Although experiments using static paradigms show saccadic impairment in PD, few studies have quantified visual sampling during dynamic motor tasks such as gait.This article describes a protocol developed for testing visuo-cognition during gait in order to examine the: 1) independent roles of cognition and vision in gait in PD, 2) interaction between both functions, and 3) role of visuo-cognition in gait in PD.Methods Two groups of older adults (≥50 years old) were recruited; non-demented people with PD (n=60) and age-matched controls (n=40). Participants attended one session and a sub-group (n=25) attended two further sessions in order to establish mobile eye-tracker reliability. Participants walked in a gait laboratory under different attentional (single and dual task), environmental (walk straight, through a door and turning), and cueing (no visual cues and visual cues) conditions. Visual sampling was recorded using synchronised mobile eye-tracker and electrooculography systems, and gait was measured using 3D motion analysis.Discussion This exploratory study examined visuo-cognitive processes and their impact on gait in PD. Improved understanding of the influence of cognitive and visual functions on visual sampling during gait and gait in PD will assist in development of interventions to improve gait and reduce falls risk. This study will also help establish robust mobile eye-tracking methods in older adults and people with PD.


2015 ◽  
Vol 30 (5) ◽  
pp. 431-439 ◽  
Author(s):  
Evelien Nackaerts ◽  
Alice Nieuwboer ◽  
Sanne Broeder ◽  
Bouwien C. M. Smits-Engelsman ◽  
Stephan P. Swinnen ◽  
...  

Background. Handwriting is often impaired in Parkinson’s disease (PD). Several studies have shown that writing in PD benefits from the use of cues. However, this was typically studied with writing and drawing sizes that are usually not used in daily life. Objective. This study examines the effect of visual cueing on a prewriting task at small amplitudes (≤1.0 cm) in PD patients and healthy controls to better understand the working action of cueing for writing. Methods. A total of 15 PD patients and 15 healthy, age-matched controls performed a prewriting task at 0.6 cm and 1.0 cm in the presence and absence of visual cues (target lines). Writing amplitude, variability of amplitude, and speed were chosen as dependent variables, measured using a newly developed touch-sensitive tablet. Results. Cueing led to immediate improvements in writing size, variability of writing size, and speed in both groups in the 1.0 cm condition. However, when writing at 0.6 cm with cues, a decrease in writing size was apparent in both groups ( P < .001) and the difference in variability of amplitude between cued and uncued writing disappeared. In addition, the writing speed of controls decreased when the cue was present. Conclusions. Visual target lines of 1.0 cm improved the writing of sequential loops in contrast to lines spaced at 0.6 cm. These results illustrate that, unlike for gait, visual cueing for fine-motor tasks requires a differentiated approach, taking into account the possible increases of accuracy constraints imposed by cueing.


2021 ◽  
pp. 154596832110413
Author(s):  
Samuel Stuart ◽  
Johanna Wagner ◽  
Scott Makeig ◽  
Martina Mancini

Background. Gait impairments are common in Parkinson’s disease (PD) and increase falls risk. Visual cues can improve gait in PD, particularly freezing of gait (FOG), but mechanisms involved in visual cue response are unknown. This study aimed to examine brain activity in response to visual cues in people with PD who do (PD+FOG) and do not report FOG (PD-FOG) and explore relationships between attention, brain activity and gait. Methods. Mobile EEG measured brain activity during gait in 20 healthy older adults and 43 PD participants (n=22 PD+FOG, n=21 PD-FOG). Participants walked for 2-minutes with and without visual cues (transverse lines to step over). We report power spectral density (PSD) in Delta (1-4 Hz), Theta (4-7 Hz), Alpha (8-12 Hz), Beta (14-24 Hz) and Gamma (30-50 Hz) bands within clusters of similarly brain localized independent component sources. Results. PSDs within the parietal and occipital lobes were altered when walking with visual cues in PD, particularly in PD+FOG. Between group, differences suggested that parietal sources in PD, particularly with PD+FOG, had larger activity compared to healthy older adults when walking. Within group, visual cues altered brain activity in PD, particularly in PD+FOG, within visual processing brain regions. In PD participants, brain activity differences with cues correlated with gait improvements, and in PD+FOG those with worse attention required more visual attentional processing (reduced alpha PSD) in the occipital lobe. Conclusions. Visual cues improve gait and influence brain activity during walking in PD, particularly in PD+FOG. Findings may allow development of more effective therapeutics.


Author(s):  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Clint Hansen ◽  
Julius Welzel ◽  
Gerhard Schmidt ◽  
...  

Abstract Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson’s disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson’s disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%), slalom walking (IC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%), and turning (IC: recall $$\ge$$ ≥ 85%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 91%; FC: recall $$\ge$$ ≥ 84%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gloria Vergara-Diaz ◽  
Jean-Francois Daneault ◽  
Federico Parisi ◽  
Chen Admati ◽  
Christina Alfonso ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.


Gerontology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Ram kinker Mishra ◽  
Catherine Park ◽  
He Zhou ◽  
Bijan Najafi ◽  
T. Adam Thrasher

<b><i>Introduction:</i></b> Parkinson’s disease (PD) progressively impairs motor and cognitive performance. The current tools to detect decline in motor and cognitive functioning are often impractical for busy clinics and home settings. To address the gap, we designed an instrumented trail-making task (iTMT) based on a wearable sensor (worn on the shin) with interactive game-based software installed on a tablet. The iTMT test includes reaching to 5 indexed circles, a combination of numbers (1–3) and letters (A&amp;B) randomly positioned inside target circles, in a sequential order, which virtually appears on a screen kept in front of the participants, by rotating one’s ankle joint while standing and holding a chair for safety. By measuring time to complete iTMT task (iTMT time), iTMT enables quantifying cognitive-motor performance. <b><i>Purpose:</i></b> This study’s objective is to examine the feasibility of iTMT to detect early cognitive-motor decline in PDs. <b><i>Method:</i></b> Three groups of volunteers, including 14 cognitively normal (CN) older adults, 14 PDs, and 11 mild cognitive impaireds (MCI), were recruited. Participants completed MoCA, 20 m walking test, and 3 trials of iTMT. <b><i>Results:</i></b> All participants enabled to complete iTMT with &#x3c;3 min, indicating high feasibility. The average iTMT time for CN-Older, PD, and MCI participants were 20.9 ± 0.9 s, 32.3 ± 2.4 s, and 40.9 ± 4.5 s, respectively. After adjusting for age and education level, pairwise comparison suggested large effect sizes for iTMT between CN-older versus PD (Cohen’s <i>d</i> = 1.7, <i>p</i> = 0.024) and CN-older versus MCI (<i>d</i> = 1.57, <i>p</i> &#x3c; 0.01). Significant correlations were observed when comparing iTMT time with the gait speed (<i>r</i> = −0.4, <i>p</i> = 0.011) and MoCA score (<i>r</i> = −0.56, <i>p</i> &#x3c; 0.01). <b><i>Conclusion:</i></b> This study demonstrated the feasibility and early results supporting the potential application of iTMT to determine cognitive-motor and distinguishing individuals with MCI and PD from CN-older adults. Future studies are warranted to test the ability of iTMT to track its subtle changes over time.


Sign in / Sign up

Export Citation Format

Share Document