scholarly journals Verification of quantitative trait locus for stickiness of cooked rice and amylose content by developing near-isogenic lines

2008 ◽  
Vol 58 (3) ◽  
pp. 235-242 ◽  
Author(s):  
Asako Kobayashi ◽  
Katsura Tomita ◽  
Faming Yu ◽  
Yoshinobu Takeuchi ◽  
Masahiro Yano
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xingyi Wang ◽  
Hui Liu ◽  
Kadambot H. M. Siddique ◽  
Guijun Yan

Abstract Background Pre-harvest sprouting (PHS) in wheat can cause severe damage to both grain yield and quality. Resistance to PHS is a quantitative trait controlled by many genes located across all 21 wheat chromosomes. The study targeted a large-effect quantitative trait locus (QTL) QPhs.ccsu-3A.1 for PHS resistance using several sets previously developed near-isogenic lines (NILs). Two pairs of NILs with highly significant phenotypic differences between the isolines were examined by RNA sequencing for their transcriptomic profiles on developing seeds at 15, 25 and 35 days after pollination (DAP) to identify candidate genes underlying the QTL and elucidate gene effects on PHS resistance. At each DAP, differentially expressed genes (DEGs) between the isolines were investigated. Results Gene ontology and KEGG pathway enrichment analyses of key DEGs suggested that six candidate genes underlie QPhs.ccsu-3A.1 responsible for PHS resistance in wheat. Candidate gene expression was further validated by quantitative RT-PCR. Within the targeted QTL interval, 16 genetic variants including five single nucleotide polymorphisms (SNPs) and 11 indels showed consistent polymorphism between resistant and susceptible isolines. Conclusions The targeted QTL is confirmed to harbor core genes related to hormone signaling pathways that can be exploited as a key genomic region for marker-assisted selection. The candidate genes and SNP/indel markers detected in this study are valuable resources for understanding the mechanism of PHS resistance and for marker-assisted breeding of the trait in wheat.


2018 ◽  
Vol 69 (9) ◽  
pp. 864 ◽  
Author(s):  
Xingyi Wang ◽  
Hui Liu ◽  
Md Sultan Mia ◽  
Kadambot H. M. Siddique ◽  
Guijun Yan

Resistance to pre-harvest sprouting (PHS) in wheat (Triticum aestivum L.) is one of the most valuable traits in many breeding programs. However, the quantitative nature of inheritance of PHS resistance challenges the study of this trait. Near-isogenic lines (NILs) can turn a complicated quantitative trait into a Mendelian factor (qualitative) and are, therefore, valuable materials for identification of the gene(s) responsible for a specific phenotypic trait and for functional studies of specific loci. Five pairs of NILs were developed and confirmed for a major quantitative trait locus (QTL) located on the long arm of chromosome 3A contributing to PHS resistance in wheat. These NILs were generated by using the heterogeneous inbred family method and a fast generation-cycling system. Significant differences in PHS resistance between the isolines were detected in the NILs. The presence of the PHS-resistance allele from the resistant parent increased resistance to sprouting on spikes by 26.7–96.8%, with an average of 73.8%, and increased seed dormancy by 36.9–87.2%, with an average of 59.9% across the NILs. These NILs are being used for the identification of candidate genes responsible for this major PHS-resistance locus on wheat chromosome arm 3AL.


Sign in / Sign up

Export Citation Format

Share Document