scholarly journals A Comparative Study on Methods of Connecting Large-Scale Offshore Wind Farms into Power Systems

2013 ◽  
Vol 2 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Yuan-Kang Wu ◽  
Chin-Yin Lee ◽  
Jian-Hong Pan
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3879 ◽  
Author(s):  
Ali Bidadfar ◽  
Oscar Saborío-Romano ◽  
Vladislav Akhmatov ◽  
Nicolaos A. Cutululis ◽  
Poul E. Sørensen

Offshore high-voltage DC (HVDC) grids are developing as a technically reliable and economical solution to transfer more offshore wind power to onshore power systems. It is also foreseen that the offshore HVDC grids pave the way for offshore wind participation in power systems’ balancing process through frequency support. The primary frequency control mechanism in an HVDC grid can be either centralized using communication links between HVDC terminals or decentralized by the simultaneous use of DC voltage and frequency droop controls. This paper investigates the impact of both types of primary frequency control of offshore HVDC grids on onshore power system dynamics. Parametric presentation of power systems’ electro-mechanical dynamics and HVDC controls is developed to analytically prove that the primary frequency control can improve the damping of interarea modes of onshore power systems. The key findings of the paper include showing that the simultaneous use of frequency and DC voltage droop controls on onshore converters results in an autonomous share of damping torque between onshore power systems even without any participation of offshore wind farms in the frequency control. It is also found that the resulting damping from the frequency control of offshore HVDC is not always reliable as it can be nullified by the power limits of HVDC converters or wind farms. Therefore, using power oscillation damping control in parallel with frequency control is suggested. The analytical findings are verified by simulations on a three-terminal offshore HVDC grid.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1914 ◽  
Author(s):  
Roland Ryndzionek ◽  
Łukasz Sienkiewicz

This paper presents an overview of the DC link development and evolution dedicated to HVDC structure for connecting offshore wind power plants to onshore power systems. The growing demand for the green energy has forced investors in power industry to look for resources further out at sea. Hence, the development of power electronics and industrial engineering has enabled offshore wind farms to be situated further from the shore and in deeper waters. However, their development will require, among other technologies, DC-DC conversion systems. The advantages of HVDC over HVAC technology in relation to transmission distance are given. The different HVDC configurations and topologies of HVDC converters are elucidated. In this context, the HVDC grids are a promising alternative for the expansion of the existing AC grid.


2003 ◽  
Vol 27 (4) ◽  
pp. 239-256 ◽  
Author(s):  
A G Dutton

Hydrogen is a leading contender to become an alternative to fossil fuel for transport and for heat and power systems. The potential for the integration of water electrolysis systems in land based and offshore wind farms is explored and compared with the conventional alternative – steam reforming of methane. Depending on the specific production technology, hydrogen can displace fossil fuels and so reduce or completely remove the emission of carbon dioxide and other pollutants. This paper examines the principal technologies for producing hydrogen and shows how the eventual choice is likely to depend as much on political and legislative factors as on economic criteria.


2016 ◽  
Vol 7 (4) ◽  
pp. 1398-1407 ◽  
Author(s):  
Yingying Chen ◽  
Zhao Yang Dong ◽  
Ke Meng ◽  
Feng ji Luo ◽  
Zhao Xu ◽  
...  

2020 ◽  
Author(s):  
Corinna Schrum ◽  
Naveed Akhtar ◽  
Nils Christiansen ◽  
Jeff Carpenter ◽  
Ute Daewel ◽  
...  

<p>The North Sea is a world-wide hot-spot in offshore wind energy production and installed capacity is rapidly increasing. Current and potential future developments raise concerns about the implications for the environment and ecosystem. Offshore wind farms change the physical environment across scales in various ways, which have the potential to modify biogeochemical fluxes and ecosystem structure. The foundations of wind farms cause oceanic wakes and sediment fluxes into the water column. Oceanic wakes have spatial scales of about O(1km) and structure local ecosystems within and in the vicinity of wind farms. Spatially larger effects can be expected from wind deficits and atmospheric boundary layer turbulence arising from wind farms. Wind disturbances extend often over muliple tenths of kilometer and are detectable as large scale wind wakes. Moreover, boundary layer disturbances have the potential to change the local weather conditions and foster e.g. local cloud development. The atmospheric changes in turn changes ocean circulation and turbulence on the same large spatial scales and modulate ocean nutrient fluxes. The latter directly influences biological productivity and food web structure. These cascading effects from atmosphere to ocean hydrodynamics, biogeochemistry and foodwebs are likely underrated while assessing potential and risks of offshore wind.</p><p>We present latest evidence for local to regional environmental impacts, with a focus on wind wakes and discuss results from observations, remote sensing and modelling.  Using a suite of coupled atmosphere, ocean hydrodynamic and biogeochemistry models, we quantify the impact of large-scale offshore wind farms in the North Sea. The local and regional meteorological effects are studied using the regional climate model COSMO-CLM and the coupled ocean hydrodynamics-ecosystem model ECOSMO is used to study the consequent effects on ocean hydrodynamics and ocean productivity. Both models operate at a horizontal resolution of 2km.</p>


2015 ◽  
Vol 8 (4) ◽  
pp. 3481-3522 ◽  
Author(s):  
P. J. H. Volker ◽  
J. Badger ◽  
A. N. Hahmann ◽  
S. Ott

Abstract. We describe the theoretical basis, implementation and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP), uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.


2012 ◽  
Vol 1 (33) ◽  
pp. 90 ◽  
Author(s):  
Arne Stahlmann ◽  
Torsten Schlurmann

Regarding offshore constructions, there is still a lack in knowledge of scour progression for complex structures like foundations for offshore wind energy converters at present, which is however necessary for its dimensioning. As an example of such complex structure types, tripod foundations are constructed in German offshore wind farms at present. In order to describe physical processes and influencing factors on scour progression from a scientific point of view, comprehensive investigations on the scouring phenomena for tripod foundations have been carried out and will be partly presented here. The overall investigation method consists of a combination of 1:40 small and 1:12 large scale physical model tests in wave flumes, numerical simulations using CFD methods and in-situ measured scour data. For the numerical modeling part, a sediment transport model formulation has been implemented into OpenFOAM software code. The results show a general variability of scour depending on the load boundary conditions and structural parameters. Scours occur both at the foundation piles and directly under the structure, which in this form could not be predicted using standard approaches, but which has to be taken into account when regarding the soil mechanical stability and the final dimensioning of the foundations.


Sign in / Sign up

Export Citation Format

Share Document