A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind

2021 ◽  
Author(s):  
NIKOLAY BARKHATOV ◽  
SERGEY REVUNOV

The auroral activity indices AU, AL, AE, introduced into geophysics at the beginning of the space era, although they have certain drawbacks, are still widely used to monitor geomagnetic activity at high latitudes. The AU index reflects the intensity of the eastern electric jet, while the AL index is determined by the intensity of the western electric jet. There are many regression relationships linking the indices of magnetic activity with a wide range of phenomena observed in the Earth's magnetosphere and atmosphere. These relationships determine the importance of monitoring and predicting geomagnetic activity for research in various areas of solar-terrestrial physics. The most dramatic phenomena in the magnetosphere and high-latitude ionosphere occur during periods of magnetospheric substorms, a sensitive indicator of which is the time variation and value of the AL index. Currently, AL index forecasting is carried out by various methods using both dynamic systems and artificial intelligence. Forecasting is based on the close relationship between the state of the magnetosphere and the parameters of the solar wind and the interplanetary magnetic field (IMF). This application proposes an algorithm for describing the process of substorm formation using an instrument in the form of an Elman-type ANN by reconstructing the AL index using the dynamics of the new integral parameter we introduced. The use of an integral parameter at the input of the ANN makes it possible to simulate the structure and intellectual properties of the biological nervous system, since in this way an additional realization of the memory of the prehistory of the modeled process is provided.

2015 ◽  
Vol 1 (3) ◽  
pp. 11-20 ◽  
Author(s):  
Надежда Куражковская ◽  
Nadezhda Kurazhkovskaya ◽  
Борис Клайн ◽  
Boris Klain

We present the results of investigation of the influence of geomagnetic activity, solar wind and parameters of the interplanetary magnetic field (IMF) on properties of the intermittency of midlatitude burst series of Pi2 geomagnetic pulsations observed during magnetospheric substorms on the nightside (substorm Pi2) and in the absence of these phenomena (nonsub-storm Pi2). We considered the index α as a main characteristic of intermittency of substorm and nonsubstorm Pi2 pulsations. The index α characterizes the slope of the cumulative distribution function of Pi2 burst amplitudes. The study indicated that the value and dynamics of the index α varies depending on the planetary geomagnetic activity, auroral activity and the intensity of magnetospheric ring currents. In addition, the forms of dependences of the index α on the density n, velocity V, dynamic pressure Pd of the solar wind and IMF Bx-component are different. The behavior of the index α depending on the module of B, By- and Bz-components is similar. We found some critical values of V, Pd, B, By- and Bz-components, after reaching of which the turbulence of the magnetotail plasma during substorm development is decreased. The revealed patterns of the intermittency of Pi2 pulsations can be used for qualitative assessment of turbulence level in the magnetotail plasma depending on changing interplanetary conditions.


2016 ◽  
Vol 2 (1) ◽  
pp. 44-49
Author(s):  
Георгий Макаров ◽  
Georgy Makarov

Geomagnetic activity asymmetry in the Northern and Southern hemispheres is studied. It is shown that the higher is the level of magnetic activity the greater is the asymmetry. It is found that the asymmetry in the hemispheres manifests itself in the 06–18-hour component of magnetic activity diurnal variation, while the asymmetry in the 00–12-hourly component is completely absent. The cause of geomagnetic north-south asymmetry is supposed to be meridional Pedersen current between high and middle latitudes in the ionosphere. A qualitative model of formation of asymmetry connected with the solar wind electric field is proposed.


Author(s):  
Vitalii Degtyarev ◽  
Georgy Popov ◽  
Svetlana Chudnenko

Recently a number of publications have appeared on the long and deep minimum in cycle 23 of solar activity. This interest is due to the fact that it turned out to be the longest and deepest in terms of the number of sunspots in the entire era of space exploration. The features of the minimum of cycle 23 of solar activity and the beginning of cycle 24 made it possible to assume that in the coming decades, a minimum of solar activity similar to the Dalton or Maunder minimum, leading to a global change in the earth's climate, may occur. Such assumptions make a detailed study of the influence of the minimum of solar cycle 23 on the parameters of the solar wind and the interplanetary magnetic field, as well as a comparison of this influence with similar manifestations in the three previous cycles very urgent. The work carried out statistical processing and analysis of data available in print and on the Internet on the indices of solar activity (W and F10.7), on geomagnetic activity, as well as on the parameters of the solar wind and interplanetary field. In contrast to other similar studies, when choosing time intervals for all cycles, only one — 12 months was used, which made it possible to exclude annual and semi-annual variations in solar wind parameters. For the considered minima of solar activity, the geoeffectiveness of the disturbed fluxes ICME, CIR, and Sheath was considered. A monotonic and very significant decrease in the geoeffectiveness of the ICME streams was found. Data processing on the hourly average values of the solar wind parameters at the minima of geomagnetic activity for 4 cycles confirmed the significant difference between cycle 23 and the previous ones in the behavior of the magnetic field. The cycle-by-cycle decrease in the geoeffectiveness of coronal ejections discussed in the press deserves a more detailed analysis using extensive data on magnetic activity indices.


2016 ◽  
Vol 2 (1) ◽  
pp. 32-35
Author(s):  
Георгий Макаров ◽  
Georgy Makarov

Geomagnetic activity asymmetry in the northern and southern hemispheres is studied. It is shown, that the higher is the level of magnetic activity the greater is asymmetry. It is found, that the asymmetry of hemispheres shows itself in the 06–18-hourly component of magnetic activity daily variation, while the asymmetry in the 00–12-hourly component is completely absent. The cause of geomagnetic north-south asymmetry is supposed to be Pedersen meridional current between high and low latitudes in the ionosphere. The qualitative model of formation of asymmetry connected with the solar wind electric field is proposed.


2011 ◽  
Vol 2 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Igor Savel'evich Fal'kovich ◽  
M. R. Olyak ◽  
Nikolai Nikolaevich Kalinichenko ◽  
I. N. Bubnov

2021 ◽  
Vol 217 (3) ◽  
Author(s):  
K. J. Trattner ◽  
S. M. Petrinec ◽  
S. A. Fuselier

AbstractOne of the major questions about magnetic reconnection is how specific solar wind and interplanetary magnetic field conditions influence where reconnection occurs at the Earth’s magnetopause. There are two reconnection scenarios discussed in the literature: a) anti-parallel reconnection and b) component reconnection. Early spacecraft observations were limited to the detection of accelerated ion beams in the magnetopause boundary layer to determine the general direction of the reconnection X-line location with respect to the spacecraft. An improved view of the reconnection location at the magnetopause evolved from ionospheric emissions observed by polar-orbiting imagers. These observations and the observations of accelerated ion beams revealed that both scenarios occur at the magnetopause. Improved methodology using the time-of-flight effect of precipitating ions in the cusp regions and the cutoff velocity of the precipitating and mirroring ion populations was used to pinpoint magnetopause reconnection locations for a wide range of solar wind conditions. The results from these methodologies have been used to construct an empirical reconnection X-line model known as the Maximum Magnetic Shear model. Since this model’s inception, several tests have confirmed its validity and have resulted in modifications to the model for certain solar wind conditions. This review article summarizes the observational evidence for the location of magnetic reconnection at the Earth’s magnetopause, emphasizing the properties and efficacy of the Maximum Magnetic Shear Model.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 390
Author(s):  
Pouya Manshour ◽  
Georgios Balasis ◽  
Giuseppe Consolini ◽  
Constantinos Papadimitriou ◽  
Milan Paluš

An information-theoretic approach for detecting causality and information transfer is used to identify interactions of solar activity and interplanetary medium conditions with the Earth’s magnetosphere–ionosphere systems. A causal information transfer from the solar wind parameters to geomagnetic indices is detected. The vertical component of the interplanetary magnetic field (Bz) influences the auroral electrojet (AE) index with an information transfer delay of 10 min and the geomagnetic disturbances at mid-latitudes measured by the symmetric field in the H component (SYM-H) index with a delay of about 30 min. Using a properly conditioned causality measure, no causal link between AE and SYM-H, or between magnetospheric substorms and magnetic storms can be detected. The observed causal relations can be described as linear time-delayed information transfer.


2011 ◽  
Vol 29 (3) ◽  
pp. 489-497
Author(s):  
E Soltani ◽  
A Soltani ◽  
S Galeshi ◽  
F Ghaderi-far ◽  
E Zeinali

Volunteer canola (Brassica napus) and Sinapis arvensis are well identified weeds of different cropping systems. Quantitative information on regarding seed production by them is limited. Such information is necessary to model dynamics of soil seed banks. The aim of this work was to quantify seed production as a function of the size of those weeds. A wide range of plant size was produced by using a fan seeding system performed at two sowing dates (environments). Plant size varied from 3 to 167 g per plant for canola and from 6 to 104 g per plant for S. arvensis. Seed production ranged from 543 to14,773 seeds per plant for canola, and from 264 to 10,336 seeds per plant for S. arvensis. There was a close relationship between seed production per plant and plant size which was well-described by a power function (y = 130.6x0.94; R² = 0.93 for canola and y = 28x1.27; R² = 0.95 for S. arvensis). There was also strong relationships among the number of pods produced in individual plants and the quantity of seeds produced (g per plant) with the size of the plant. The relationships found in this study can be used in dynamic seed bank models of volunteer canola and S. arvensis.


Sign in / Sign up

Export Citation Format

Share Document