WOOD POLYMER COMPOSITE - MODELING ITS PROPERTIES

2016 ◽  
Vol 8 (3) ◽  
pp. 82-86
Author(s):  
Стородубцева ◽  
Tamara Storodubtseva

This article describes a technique for modeling of wood-polymer composite sand. Presented interface input form input data for modeling, differential equations underlying the mathematical model.

10.12737/8462 ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 130-139
Author(s):  
Стародубцева ◽  
Tamara Starodubtseva ◽  
Аскомитный ◽  
Aleksey Askomitnyy

This article describes a technique for modeling of wood polymer-sandy composite. Interface input form of initial data for modeling; differential equations underlying the mathematical model are presented. To solve the system of differential and algebraic equations computer program "Program to simulate the struc-ture and mechanical properties of wood polymer-sandy composite" is developed. The program, developed in the environment of Borland Delphi 7.0, programming language Object Pascal, is intended for modeling the mechanical behavior of wood polymer-sandy composite of given composition.


2017 ◽  
Vol 6 (4) ◽  
pp. 153-161
Author(s):  
Абразумов ◽  
Vladimir Abrazumov ◽  
Котенко ◽  
Vladimir Kotenko ◽  
Ганиева ◽  
...  

Here a mathematical model of the process of surface ribbing of pieces made of wood-polymer composites based on solution of an equation of thermal conductivity using effective characteristics of thermal conductivity and thermal capacity of composites with different types of polymer matrixes is offered. А characteristic feature of wood-polymer composite boards, that their linear dimension is bigger than their thickness, was used in creating a mathematical model. This feature provides an opportunity to suppose that while heating the wood-polymer composite board in the thermal environment chаmber with infrared heating element, the change of the temperature will proceed only in the direction which is perpendicular to the surface of the board.


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


Author(s):  
Md.Musharof Hussain Khan ◽  
Ivan Deviatkin ◽  
Jouni Havukainen ◽  
Mika Horttanainen

Abstract Purpose Waste recycling is one of the essential tools for the European Union’s transition towards a circular economy. One of the possibilities for recycling wood and plastic waste is to utilise it to produce composite product. This study analyses the environmental impacts of producing composite pallets made of wood and plastic waste from construction and demolition activities in Finland. It also compares these impacts with conventional wooden and plastic pallets made of virgin materials. Methods Two different life cycle assessment methods were used: attributional life cycle assessment and consequential life cycle assessment. In both of the life cycle assessment studies, 1000 trips were considered as the functional unit. Furthermore, end-of-life allocation formula such as 0:100 with a credit system had been used in this study. This study also used sensitivity analysis and normalisation calculation to determine the best performing pallet. Result and discussion In the attributional cradle-to-grave life cycle assessment, wood-polymer composite pallets had the lowest environmental impact in abiotic depletion potential (fossil), acidification potential, eutrophication potential, global warming potential (including biogenic carbon), global warming potential (including biogenic carbon) with indirect land-use change, and ozone depletion potential. In contrast, wooden pallets showed the lowest impact on global warming potential (excluding biogenic carbon). In the consequential life cycle assessment, wood-polymer composite pallets showed the best environmental impact in all impact categories. In both attributional and consequential life cycle assessments, plastic pallet had the maximum impact. The sensitivity analysis and normalisation calculation showed that wood-polymer composite pallets can be a better choice over plastic and wooden pallet. Conclusions The overall results of the pallets depends on the methodological approach of the LCA. However, it can be concluded that the wood-polymer composite pallet can be a better choice over the plastic pallet and, in most cases, over the wooden pallet. This study will be of use to the pallet industry and relevant stakeholders.


2016 ◽  
Vol 871 ◽  
pp. 126-131 ◽  
Author(s):  
Larisa Grigorieva ◽  
Pavel Oleinik

The article considers contemporary methods and especially recycling of wood waste. The volume of wood waste is constantly growing due to the increase in the number of buildings subject to demolition or dismantling, reconstruction and repair works. The article contains the main requirements to the raw material derived from waste. Advantages of products made from wood-polymer composite materials on physic mechanical parameters. The comparative characteristic of cost for the production of wood-polymer plastic. It is noted that production made from wood polymer composite materials has unlimited product range, including boards, various profiled molded and moulded details with complicated shape (the board for the floor, skirting board, baguette, etc).


2011 ◽  
Vol 299-300 (1) ◽  
pp. 26-33
Author(s):  
Jair Fiori Júnior ◽  
Raquel Piletti ◽  
Tatiana Barichello ◽  
Mara G.N. Quadri ◽  
Humberto G. Riella ◽  
...  

2010 ◽  
Vol 150-151 ◽  
pp. 1-5
Author(s):  
Yong Feng Li ◽  
Chi Jiang ◽  
Duo Jun Lv ◽  
Xiao Ying Dong ◽  
Yi Xing Liu

In order to improve the value-added applications of low-quality wood, a novel Wood-Polymer Composite was fabricated by in-situ synthesis of copolymer from monomers within wood porous structure. The structure was characterized with SEM and FTIR, and its dimensional stability was also tested. The SEM observations showed that copolymer filled up wood pores and contact tightly with wood matrix, indicating strong interactions between them. FTIR analysis indicated that when the monomers copolymerized in situ wood porous structure, they also reacted with wood matrix by reaction of hydroxyl groups and ester groups, indicating chemical bond between the two phases, which is agreement with SEM observations. The volume swelling efficiency and contact angle of such composite were higher than those of wood, respectively, indicating good dimensional stability involving volume swelling efficiency and contact angle. Such composite could be potentially applied in fields of construction, traffic and indoor decoration.


Sign in / Sign up

Export Citation Format

Share Document