Features of mathematical modeling of wood-polymer composite sandy

10.12737/8462 ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 130-139
Author(s):  
Стародубцева ◽  
Tamara Starodubtseva ◽  
Аскомитный ◽  
Aleksey Askomitnyy

This article describes a technique for modeling of wood polymer-sandy composite. Interface input form of initial data for modeling; differential equations underlying the mathematical model are presented. To solve the system of differential and algebraic equations computer program "Program to simulate the struc-ture and mechanical properties of wood polymer-sandy composite" is developed. The program, developed in the environment of Borland Delphi 7.0, programming language Object Pascal, is intended for modeling the mechanical behavior of wood polymer-sandy composite of given composition.

2016 ◽  
Vol 8 (3) ◽  
pp. 82-86
Author(s):  
Стородубцева ◽  
Tamara Storodubtseva

This article describes a technique for modeling of wood-polymer composite sand. Presented interface input form input data for modeling, differential equations underlying the mathematical model.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


Author(s):  
Sudhakar Yadav ◽  
Vivek Kumar

This study develops a mathematical model for describing the dynamics of the banana-nematodes and its pest detection method to help banana farmers. Two criteria: the mathematical model and the type of nematodes pest control system are discussed. The sensitivity analysis, local stability, global stability, and the dynamic behavior of the mathematical model are performed. Further, we also develop and discuss the optimal control mathematical model. This mathematical model represents various modes of management, including the initial release of infected predators as well as the destroying of nematodes. The theoretical results are shown and verified by numerical simulations.


2010 ◽  
Vol 34-35 ◽  
pp. 1165-1169 ◽  
Author(s):  
Yong Feng Li ◽  
Bao Gang Wang ◽  
Qi Liang Fu ◽  
Yi Xing Liu ◽  
Xiao Ying Dong

In order to improve the value-added applications of low-quality wood, a novel composite, wood-polymer composite, was fabricated by in-situ terpolymerization of MMA, VAc and St within wood porous structure. The structure of the composite and the reaction of monomers within wood were both analyzed by SEM and FTIR, and the mechanical properties were also evaluated. The SEM observation showed that the polymer mainly filled up wood pores, suggesting good polymerizating crafts. The FTIR results indicated that under the employed crafts, three monomers terpolymerized in wood porous structure, and grafted onto wood matrix through reaction of ester group from monomers and hydroxyl group from wood components, suggesting chemical combination between the two phases. The mechanical properties of the wood-polymer composite involving modulus of rupture, compressive strength, wearability and hardness were improved 69%, 68%, 36% and 210% over those of untreated wood, respectively. Such method seems to be an effective way to converting low-quality wood to high-quality wood.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


Author(s):  
Petro Martyniuk ◽  
Oksana Ostapchuk ◽  
Vitalii Nalyvaiko

The problem of pollution transfer by water flow in open channel was considered. The mathematical model of the problem was constructed. The numerical solution of the onedimensional boundary problem was obtained. The computational algorithm for solving the problem was programmed to implement. A series of numerical experiments with their further analysis was conducted.


Author(s):  
Edmunds Teirumnieks ◽  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Harijs Kalis

Metals deposition in peat can aid to evaluate impact of atmospheric or wastewaters pollution and thus can be a good indicator of recent and historical changes in the pollution loading. For peat using in agriculture, industrial, heat production etc. knowledge of peat metals content is important. Experimental determination of metals in peat is very long and expensive work. Using experimental data the mathematical model for calculation of concentrations of metals in different points for different layers is developed. The values of the metals (Ca, Mg, Fe, Sr, Cu, Zn, Mn, Pb, Cr, Ni, Se, Co, Cd, V, Mo) concentrations in different layers in peat taken from Knavu peat bog from four sites are determined using inductively coupled plasma optical emission spectrometer. Mathematical model for calculation of concentrations of metal has been described in the paper. As an example, mathematical models for calculation of Pb concentrations have been analyzed.


Author(s):  
Debraj Sarkar ◽  
Debabrata Roy ◽  
Amalendu Bikash Choudhury ◽  
Sotoshi Yamada

Purpose A saturated iron core superconducting fault current limiter (SISFCL) has an important role to play in the present-day power system, providing effective protection against electrical faults and thus ensuring an uninterrupted supply of electricity to the consumers. Previous mathematical models developed to describe the SISFCL use a simple flux density-magnetic field intensity curve representing the ferromagnetic core. As the magnetic state of the core affects the efficient working of the device, this paper aims to present a novel approach in the mathematical modeling of the device with the inclusion of hysteresis. Design/methodology/approach The Jiles–Atherton’s hysteresis model is utilized to develop the mathematical model of the limiter. The model is numerically solved using MATLAB. To support the validity of model, finite element model (FEM) with similar specifications was simulated. Findings Response of the limiter based on the developed mathematical model is in close agreement with the FEM simulations. To illustrate the effect of the hysteresis, the responses are compared by using three different hysteresis characteristics. Harmonic analysis is performed and comparison is carried out utilizing fast Fourier transform and continuous wavelet transform. It is observed that the core with narrower hysteresis characteristic not only produces a better current suppression but also creates a higher voltage drop across the DC source. It also injects more harmonics in the system under fault condition. Originality/value Inclusion of hysteresis in the mathematical model presents a more realistic approach in the transient analysis of the device. The paper provides an essential insight into the effect of the core hysteresis characteristic on the device performance.


Sign in / Sign up

Export Citation Format

Share Document