scholarly journals New narrow-beam neutron spectrometer in complex monitoring system

2018 ◽  
Vol 4 (1) ◽  
pp. 85-88
Author(s):  
Евгения Михалко ◽  
Evgeniya Mikhalko ◽  
Юрий Балабин ◽  
Yuriy Balabin ◽  
Евгений Маурчев ◽  
...  

In the interaction of cosmic rays (CRs) with Earth’s atmosphere, neutrons are formed in a wide range of energies: from thermal (E≈0.025 eV) to ultrarelativistic (E>1 GeV). To detect and study CRs, Polar Geophysical Institute (PGI) uses a complex monitoring system containing detectors of various configurations. The standard neutron monitor (NM) 18-NM-64 is sensitive to neutrons with energies E>50 MeV. The lead-free section of the neutron monitor (BSRM) detects neutrons with energies E≈(0.1÷1) MeV. Also, for sharing with standard detectors, the Apatity NM station has developed and installed a neutron spectrometer with three energy channels and a particle reception angle of 15 degrees. The configuration of the device makes it possible to study the degree of anisotropy of the particle flux from different directions. We have obtained characteristics of the detector (response function and particle reception angle), as well as geometric dimensions through numerical simulation using the GEANT4 toolkit [Agostinelli et al., 2003]. During operation of the device, we collected database of observations and received preliminary results.

2018 ◽  
Vol 4 (1) ◽  
pp. 71-74
Author(s):  
Евгения Михалко ◽  
Evgeniya Mikhalko ◽  
Юрий Балабин ◽  
Yuriy Balabin ◽  
Евгений Маурчев ◽  
...  

In the interaction of cosmic rays (CRs) with Earth’s atmosphere, neutrons are formed in a wide range of energies: from thermal (E≈0.025 eV) to ultrarelativistic (E>1 GeV). To detect and study CRs, Polar Geophysical Institute (PGI) uses a complex monitoring system containing detectors of various configurations. The standard neutron monitor (NM) 18-NM-64 is sensitive to neutrons with energies E>50 MeV. The lead-free section of the neutron monitor (BSRM) detects neutrons with energies E≈(0.1÷1) MeV. Also, for sharing with standard detectors, the Apatity NM station has developed and installed a neutron spectrometer with three energy channels and a particle reception angle of 15 degrees. The configuration of the device makes it possible to study the degree of anisotropy of the particle flux from different directions. We have obtained characteristics of the detector (response function and particle reception angle), as well as geometric dimensions through numerical simulation using the GEANT4 toolkit [Agostinelli et al., 2003]. During operation of the device, we collected database of observations and received preliminary results.


2011 ◽  
Vol 328-330 ◽  
pp. 393-397
Author(s):  
Ming Liang Wu ◽  
Xiao Bing Wang ◽  
Shu Rong Yu

Based on GPRS network remote monitoring system which uses its two-way transmission performance, can easily monitor various electrical equipments and get information. Compare with the past remote monitoring systems, the system has the advantage of flexible networking, convenient, wide range of data transmission, high reliability, fast response time, and has great significance and value of research in CNC machine tool system with upgrade GPRS in the mobile communication networks, data services expand and data transfer capabilities.


1984 ◽  
Vol 30 (5) ◽  
pp. 784-787 ◽  
Author(s):  
R A Gibson ◽  
L Lattanzio ◽  
H McGee

Abstract Metronidazole and its known metabolites in plasma can be rapidly separated by a "high-pressure" liquid-chromatographic method that can also be adapted for rapid determination of tinidazole. Samples deproteinized with trichloroacetic acid (50 g/L final concentration) undergo isocratic separation on a reversed-phase C18 column eluted with an 8/92 (by vol) mixture of acetonitrile/KH2PO4 (5 mmol/L, pH 3.0). The method is sensitive, reliably detecting as little as 25 micrograms of metronidazole and (or) its metabolites per milliliter of plasma. The detector response varied linearly with concentration for all compounds tested over a wide range (25-500 micrograms/L). Within-day and between-day variation was generally less than 2.5% for all concentrations of all compounds tested. Various other antibiotics tested did not interfere.


Author(s):  
Olena Parshyna ◽  
Yuriy Parshyn

Offenses have a negative impact on the socio-economic development of the country and make a threat to the security of the national economy. Systematic analysis of the offenses in the sphere of economic activity with the quantitative as-sessment of their reimbursement and identification of the main trends during the research has been carried out. The offenses in the field of economic activity are the object of the research. The research subjects are scientific, methodological and applied aspects of the offenses analysis in relation to the main types of economic activity in the national economy. It has been noted that the criminal situation in our country is characterized by increasing in the economic crimes. Economic crimes are becoming systematic and have organized character. The high level of correlation between the unemployment situation and the negative crimes trends has been discovered. Economic crimes include economic, political, legal, socio-psychological and organizational reasons and conditions. The complex monitoring system in order to solve problem of the combating economic crimes has been proposed. The effectiveness of such system can be achieved in two main ways. The first way concerns the development of measures that is aimed at the economic crimes preventing. Thus, we have the reduction of the crimes number. The second way involves the development of measures for the disclosure of the committed offenses of economic nature and the achievement of full reimbursement for the incurred losses. However, an important component of the complex system should be the ability to monitor, forecast and identify these sectors of the economy in which the possible offenses in the strategic foresight should be expected. The continuous monitoring with forecasting enables to develop and implement the appropriate preventive measures. Studies of the economic activities with their efficiency in the formation of GDP of Ukraine have been conducted. Dynamics of the committed offenses on the types of economic activity has been analyzed. The quantitative assessment of the material losses reimbursement of these offenses has been provided. The main causes of the committed offenses in the economic sectors have been considered. The national measures for the prevent economic crimes are: strengthening of the role and increasing of the trust to the government and its institutions; paradigm shift of the decision-making mechanism in the field of credit and financial system; development of the special mechanisms for preventing of the destabilizing tendencies both at the level of regional development and at the level of national economy. The complex monitoring system allows to identify sectors of the national economy in the aspect of strategic forecasting. Monitoring enables to develop the preventative measures which are aimed at the improving of the environment, creating of the preconditions for the economic growth and improving of the well-being of population.


Vestnik IGEU ◽  
2019 ◽  
pp. 58-66
Author(s):  
I.Yu. Dolgikh ◽  
M.G. Markov

A wide range of technological advantages of induction crucible melting furnaces makes their use in various sectors of metallurgical production relevant. However, hard operation conditions of the refractory lining of such furnaces makes it necessary to constantly monitor its condition, with the aim to extend the crucible life and prevent emergencies. Moreover, traditional methods based on the use of a bottom electrode and indication of current leakage to earth do not provide a continuous display of the lining destruction degree and make it possible to register only a critical level that requires an emergency shutdown and emptying of the furnace. This circumstance makes it necessary to develop and implement specialized electrical systems with a monitoring and control system that ensures the determination and visualization of the lining wear level and, if necessary, makes an emergency shutdown of the equipment from the power source. The developed complex is based on a microprocessor system that continuously measures the temperature at the control points at the boundary between the bottom and crucible base layers and compares the obtained values with the settings, which are determined previously on a two-dimensional axisymmetric model of the designed furnace by solving the stationary heat conduction equation at various levels of lining failure. We have developed the structure, scheme, and program for a microprocessor-based monitoring and emergency shutdown system of an induction furnace, as well as a mathematical model of the control object, which allows determining the temperature settings. The reliability of the results is confirmed by the applicability of the models to real objects, and is verified by debugging the microprocessor part in the MPLab-Sim and Proteus programs. The obtained results can be used in the practical implementation of the monitoring system and emergency shutdown of induction melting furnaces, which allows increasing the safety of their operation and extending the lining life due to timely repair.


2021 ◽  
Vol 251 ◽  
pp. 03055
Author(s):  
John Blue ◽  
Braden Kronheim ◽  
Michelle Kuchera ◽  
Raghuram Ramanujan

Detector simulation in high energy physics experiments is a key yet computationally expensive step in the event simulation process. There has been much recent interest in using deep generative models as a faster alternative to the full Monte Carlo simulation process in situations in which the utmost accuracy is not necessary. In this work we investigate the use of conditional Wasserstein Generative Adversarial Networks to simulate both hadronization and the detector response to jets. Our model takes the 4-momenta of jets formed from partons post-showering and pre-hadronization as inputs and predicts the 4-momenta of the corresponding reconstructed jet. Our model is trained on fully simulated tt events using the publicly available GEANT-based simulation of the CMS Collaboration. We demonstrate that the model produces accurate conditional reconstructed jet transverse momentum (pT) distributions over a wide range of pT for the input parton jet. Our model takes only a fraction of the time necessary for conventional detector simulation methods, running on a CPU in less than a millisecond per event.


Author(s):  
Andrey Kuzmin ◽  
Maxim Safronov ◽  
Oleg Bodin ◽  
Mikhail Petrovsky ◽  
Anton Sergeenkov

This paper describes a design of prototype of mobile heart monitoring system based on the Texas Instruments ADS1298R ECG front end and ??2540 wireless data transmission chip. The described design and technical details allow developing a new mobile heart monitoring system consisting of ECG recording device, mobile computer (smartphone or tablet). The original algorithm of energy efficiency improvement by adaptive gain control is proposed and experimentally tested. Increase of battery life is from 1% to 19% depending on concrete conditions. The new algorithm of J-point detection is described and examined on the test ECG database. The detection rate is from 88% to 93%. It will allow mobile monitoring system to inform the user about any signs of dangerous heart condition in ECG. The paper also describes experimental results of wireless protocol bandwidth and contact break detection. The results confirm the efficiency of the proposed technical solutions to mobile heart monitoring for wide range of applications from sports and fitness to monitoring for medical reasons.


Author(s):  
R. Leicht ◽  
G. G. Simon

Basic tasks in all monitoring projects involving gamma spectroscopy are design optimization and calibration of the Ge gamma spectrometer system which in general consists of one or more Ge detectors, the corresponding collimators, and the object with radioactive material (container, drum, wall, material on a conveyor etc.). A simplified approach to these problems has been developed by RWE NUKEM GmbH, leading to the software tool “ISO-Mod” which provides a straightforward comprehensive approach for the assessment and analysis of the most common cases without any need for other resources. The detector response is measured with calibration sources as a function of gamma energy, distance and polar angle. The effect of collimators is evaluated for rotational symmetry and for rectangular design based on polygon cross sections, with the possibility to have one or more layers of specific materials. The object model allows considering cubic (e. g. box, material on conveyor) or cylindrical (e. g. drum) absorption matrix and activity distributions with additional optional absorption layers. For considering the absorption in the object matrix and in the collimator material, mass attenuation coefficients are available for a wide range of energy. A number of selected gamma energies and matrix densities can be evaluated in a single evaluation run using Point Kernel and Monte Carlo simulation methods. For selected energies and densities, ISO-Mod provides the probability distribution of the calibration data. This allows investigating the sensitivity to potentially non-homogeneous activity distributions, e. g. to assess the improvement achieved when using more than one detector since up to 4 detectors can be considered simultaneously. All design data and results are — hierarchically structured — stored in a particular database. ISO-Mod is currently being used in different monitoring projects involving conveyor belts, containers and drums with radioactive material. Good agreement was found between the calculations and the results of measurements using calibrated point and homogeneous extended volume sources. Particular procedures are applied for locating hot spots in waste packages with multi-detector systems.


Sign in / Sign up

Export Citation Format

Share Document