VISCOELASTIC RESPONSES OF MDF KERF STRUCTURES

2021 ◽  
Author(s):  
ARYABHAT DARNAL ◽  
ZARYAB SHAHID ◽  
JIWAN HAN ◽  
MICHAEL MORENO ◽  
NASTASIA MULIANA

Medium-density fiberboard (MDF), comprised of chopped wood fibers and epoxy resin is commonly used in building construction. Given the current trend in freeform architecture, there is a need to generate complex geometric structures out of common construction materials. In this study, kerfing (relief cutting) method is used to create flexible and moldable shapes out of relatively rigid wood panels. The kerf panels can be easily formed into various complex shapes for outdoor facades and/or indoor paneling. The natural wood fibers and epoxy resin in MDF combine to produce a viscoelastic composite material that exhibits time-dependent changes in mechanical behavior, i.e., material stiffness/compliance. The work described herein comes from a study designed to develop a better understanding of the viscoelastic response of kerf unit cells and panels. Experimental creep tests were performed on dog-bone specimens under uniaxial loading conditions1in order to determine the viscoelastic response of the MDF. The experimental results were used to develop a model to be used in simulations. The simulations were carried out on a kerf unit cell, e.g., a square interlocked kerf, and kerf structures of complex geometries in order to investigate the time-dependent changes in the deformations of the kerf structures. From this study, a systematic design of kerf panels with complex shapes will be developed in order to minimize the time-dependent changes of kerf structures.

1997 ◽  
Vol 119 (3) ◽  
pp. 262-265 ◽  
Author(s):  
S. R. White ◽  
A. B. Hartman

Little experimental work has been done to characterize how the viscoelastic properties of composite material matrix resins develop during cure. In this paper, the results of a series of creep tests carried out on 3501–6 epoxy resin, a common epoxy matrix material for graphite/epoxy composites, at several different cure states is reported. Beam specimens were isothermally cured at increasing cure temperatures to obtain a range of degrees of cure from 0.66 to 0.99. These specimens were then tested in three-point bending to obtain creep compliance over a wide temperature range. The master curves and shift functions for each degree of cure case were obtained by time-temperature superposition. A numerical technique and direct inversion were used to calculate the stress relaxation modulus master curves from the creep compliance master curves. Direct inversion was shown to be adequate for fully cured specimens, however it underpredicts the relaxation modulus and the transition for partially cured specimens. Correlations with experimental stress relaxation data from Kim and White (1996) showed that reasonably accurate results can be obtained by creep testing followed by numerical conversion using the Hopkins-Hamming method.


CERNE ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Hamid Reza Taghiyari ◽  
Roya Majidi ◽  
Asghar Jahangiri

ABSTRACT Effects of nanowollastonite (NW) adsorption on cellulose surface were studied on physical and mechanical properties of medium-density fiberboard (MDF) panels; properties were then compared with those of MDF panels without NW-content. The size range of NW was 30-110 nm. The interaction between NW and cellulose was investigated using density functional theory (DFT). Physical and mechanical tests were carried out in accordance with the Iranian National Standard ISIRI 9044 PB Type P2 (compatible with ASTM D1037-99) specifications. Results of DFT simulations showed strong adsorption of NW on cellulose surface. Moreover, mechanical properties demonstrated significant improvement. The improvement was attributed to the strong adsorption of NW on cellulose surface predicted by DFT, adding to the strength and integrity between wood fibers in NW-MDF panels. It was concluded that NW would improve mechanical properties in MDF panels as a wood-composite material, as well as being effective in improving its biological and thermal conductivity.


2018 ◽  
Vol 33 (4) ◽  
pp. 592-602
Author(s):  
Amanda Mattsson ◽  
Tetsu Uesaka

Abstract In end-use, containerboard is subjected to a variety of loading histories, such as seconds of loading/unloading, hours of vibration, days of creep load. The fundamental question is whether the commonly measured static strength represents “strength” under these conditions. Another question is, since those time-dependent failures are notoriously variable, how to describe the probabilistic aspect. This study concerns the characterisation of these different facets of “strength”. In our earlier work, we have investigated the theoretical framework for time-dependent, probabilistic failures, and identified three material parameters: (1) characteristic strength, {S_{c}}, representing short-term strength, (2) brittleness/durability parameter, ρ, and (3) reliability parameter, β. We have also developed a new method that allows us to determine all these parameters much faster than typical creep tests. Using the new method, we have started investigating effects of basic papermaking variables on the new material parameters. Among the samples tested, the parameter ρ varied from 20 to 50, and β from 0.5 to 1.0. This suggests that, even within the current papermaking practice, there is a wide operating window to tune these new material parameters. The future work is, therefore, to find specific manufacturing variables that can systematically change these new material parameters.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3718-3733
Author(s):  
Osman Camlibel

Physical, mechanical, and formaldehyde emission properties were studied for medium density fiberboard (MDF) produced with oak (75%) and pine (25%) fibers that had been mechanically refined in the presence of calcite particles. The calcite slurry was prepared at two levels of solids, 1.5% and 3% (10 and 20 kg·m-³). Chips were cooked for 4 min at 185 °C, under 8 bar vapor pressure in an Andritz defibrillator. 1.8% liquid paraffin, 0.72% ammonium sulphate solution, and 11% urea-formaldehyde were added by percentage based on oven-dried wood fibers in the blowline at the exit of the defibrator. The fibers were dried to 11% moisture content. MDF boards (2100 mm × 2800 mm × 18 mm) were created using a continuous hot-press process. The addition of calcite in the course of MDF production resulted in improved physical properties, such as thickness swelling (ThS 24 hours) and water absorption (WA 24 hours). MDF boards prepared with calcite exhibited higher internal bond (IB), modulus of rupture (MOR), and modulus of elasticity (MOE). Resistance to axial withdrawal of screw also was increased by addition of 3% calcite. In addition, the lowest levels of formaldehyde emission were observed for MDF prepared with calcite at the 3% level.


2020 ◽  
Vol 81 ◽  
pp. 68-76
Author(s):  
Philipp Messer-Hannemann ◽  
Hannah Weyer ◽  
Graeme M Campbell ◽  
Michael M Morlock

2000 ◽  
Vol 9 (3) ◽  
pp. 096369350000900
Author(s):  
P. Vena

A constitutive model and a finite element formulation for viscoelastic anisotropic materials subject to finite strains is expounded in this paper. The composite material is conceived as a matrix reinforced with stiff fibres. The constitutive relations are obtained by defining a strain energy function and a relaxation function for each constituent. By means of this approach, the viscoelastic properties of the material constituents can be taken into account and therefore different time dependent behaviour can be assigned to the matrix and to the reinforcing fibres. The response provided by this kind of constitutive formulation allows for the description of mechanical behaviour for either natural anisotropic tissues (such as tendons and ligaments) and for the composite materials which are currently adopted for tissue reconstruction. The main features of those mechanical properties observed in an ideal uniaxial test are: a non linear stress-strain response and a time dependent response which is observed in relaxation of stresses for a prescribed constant stretch and in a moderate strain rate dependence of the measured response.


1998 ◽  
Vol 4 (S2) ◽  
pp. 838-839
Author(s):  
A. Egan ◽  
S. Shaler

Single fiber fracture is important in understanding the fundamental failure mechanisms in wood/polymer composite products such as medium density fiberboard (MDF). The mechanical properties and fracture behavior of individual wood fibers has only recently been observable using a combination of environmental scanning electron microscopy (ESEM), laser scanning confocal microscopy and digital image correlation (DIC). Previous work has shown that specific areas on the fiber such as microcompressions and pits acted as crack nucelators and induce a brash fracture across the surface of the fiber. Given the development of these procedures it is now possible to observe and measure the mechanical properties and fracture characteristics of the wood fiber/ polymer composite fibers.Individual black spruce wood fibers were coated with diphenylmethane 4-4'diisocyanate resin containing Hostasol Red GG. The addition of the Hostasol Red flurochrome provided the option of quantifying resin coverage by fluorescence microscopy.


Holzforschung ◽  
2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Petri Widsten ◽  
Alfred Hummer ◽  
Carol Heathcote ◽  
Andreas Kandelbauer

Abstract A gluing method for fiberboard based on laccase-activated tannin and wood fibers was investigated on a laboratory scale. Oxygen consumption measurements showed that hydrolyzable tannins (tannic acid and chestnut tannin) were more reactive toward laccase than condensed tannins from mimosa and quebracho. Wet-process hardboard prepared with laccase and the most reactive tannin, tannic acid, had superior mechanical strength compared to controls and boards made with laccase alone or laccase and other tannins. The other tannins did not improve mechanical properties more than laccase treatment alone. The addition of wax to the tannic acid-laccase formulation improved the dimensional stability of the boards enough for them to comply with industrial standards, although wax had a negative impact on the mechanical properties. The results cannot be directly applied to dry-process medium-density fiberboard (MDF) production; however, the positive effects of tannin and laccase on hardboard properties also warrant investigations on the green chemistry of MDF production.


Holzforschung ◽  
2018 ◽  
Vol 72 (4) ◽  
pp. 275-281 ◽  
Author(s):  
Xiaodi Ji ◽  
Yue Dong ◽  
Ruidong Yu ◽  
Wenxin Du ◽  
Xue Gu ◽  
...  

AbstractA simple and efficient method was developed for preparing medium density fiberboard (MDF) reinforced with chitosan via the traditional hot-press manufacturing process. The mechanical and dimensional properties of the MDF were investigated as a function of the chitosan amount. At the 4% level of added chitosan, the MDF reached the optimal performance and met completely the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) characterizations revealed that wood fibers and chitosan might interact with each other through the formation of hydrogen and amide bonds during the hot-pressing process. The fracture surfaces of the MDFs are indicative for strong bonds at the interface, which explain the excellent MDF performance.


Sign in / Sign up

Export Citation Format

Share Document