A RADIATION SENSITIVE ADHESIVE SYSTEM FOR FUNCTIONALLY GRADED COMPOSITE JOINTS

2021 ◽  
Author(s):  
SAMUEL B. HURVITZ ◽  
SCOTT STAPLETON ◽  
JAMAL HUSSEINI

Adhesively bonded composite joints can help reduce weight in structures and avoid material damage from fastener holes, but stress concentrations formed at the edges of the adhesive bond line are a main cause of failure. Stress concentrations within the adhesive can be reduced by lowering the stiffness at these edges and increasing the stiffness in the center of the joint. This may be achieved using a dual-cure adhesive system, where conventional curing is first used to bond a lap joint, after which high energy radiation is applied to the joint to induce additional crosslinking in specific regions. Anhydride-cured epoxy resins have been formulated to include a radiation sensitizer enabling the desired cure behavior. Tensile testing was performed on cured systems containing varying levels of radiation sensitizer in order to evaluate its effects on young’s modulus as a function of radiation dose.

Author(s):  
AKHIL BHASIN ◽  
SURESH RAJU KESHAVANARAYANA ◽  
LUIS GOMEZ ◽  
ASWINI KONA RAVI ◽  
BRIAN P. JUSTUSSON ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1723
Author(s):  
Yu Sekiguchi ◽  
Chiaki Sato

With an increasing demand for adhesives, the durability of joints has become highly important. The fatigue resistance of adhesives has been investigated mainly for epoxies, but in recent years many other resins have been adopted for structural adhesives. Therefore, understanding the fatigue characteristics of these resins is also important. In this study, the cyclic fatigue behavior of a two-part acrylic-based adhesive used for structural bonding was investigated using a fracture-mechanics approach. Fatigue tests for mode I loading were conducted under displacement control using double cantilever beam specimens with varying bond-line thicknesses. When the fatigue crack growth rate per cycle, da/dN, reached 10−5 mm/cycle, the fatigue toughness reduced to 1/10 of the critical fracture energy. In addition, significant changes in the characteristics of fatigue crack growth were observed varying the bond-line thickness and loading conditions. However, the predominance of the adhesive thickness on the fatigue crack growth resistance was confirmed regardless of the initial loading conditions. The thicker the adhesive bond line, the greater the fatigue toughness.


2011 ◽  
Vol 236-238 ◽  
pp. 1746-1751 ◽  
Author(s):  
Kun Liang ◽  
Guan Ben Du ◽  
Omid Hosseinaei ◽  
Si Qun Wang ◽  
Hui Wang

To find out the penetration of PF into the wood cell wall and its effects onthe mechanical properties in the cellular level, the elastic modulus and hardness of secondary wall (S2layer) and compound corner middle lamella (CCML) near PF bond line region were determined by nanoindentation. Compare to the reference cell walls (unaffected by PF), PF penetration into the wood tissues showed improved elastic modulus and hardness. And the mechanical properties decreased slowly with the increasing the distance from the bond line, which are attributed to the effects of PF penetration into S2layer and CCML. The reduced elastic modulus variations were from18.8 to 14.4 GPa for S2layer, and from10.1 to 7.65 GPa for CCML. The hardness was from 0.67 to 0.52 GPa for S2layer, and from 0.65 to 0.52 GPa for CCML. In each test viewpoint place, the average hardness of CCML was almost as high as that of S2layer, but the reduced elastic modulus was about 50% less than that of S2layer. But the increase ratio of mechanical properties was close. All the results showed PF penetrates into the CCML. The penetration behavior and penetration depth from bond line were similar in both S2layer and CCML.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2006 ◽  
Vol 31 (5) ◽  
pp. 604-609 ◽  
Author(s):  
M. Franke ◽  
A. W. Taylor ◽  
A. Lago ◽  
M. C. Fredel

Clinical Relevance Statistical analysis of the results obtained in this study shows that Nd:YAG laser irradiation on the adhesive system has a significant influence on bond strength to dentin. Bond strength is improved by better adhesive penetration when low energy is applied; whereas, high energy densities have a deleterious effect on the procedure.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850045 ◽  
Author(s):  
Qiang Chen ◽  
Guannan Wang ◽  
Xuefeng Chen

In order to satisfy the increasing computational demands of micromechanics, the Finite-Volume Direct Averaging Micromechanics (FVDAM) theory is developed in three-dimensional (3D) domain to simulate the multiphase heterogeneous materials whose microstructures are distributed periodically in the space. Parametric mapping, which endorses arbitrarily shaped and oriented hexahedral elements in the microstructure discretization, is employed in the unit cell solution. Unlike the finite-element (FE) technique, the expressions for local stiffness matrices are derived explicitly, enabling efficient global stiffness matrix assembly using an easily implementable algorithm. To demonstrate the accuracy and efficiency of the proposed theory, the homogenized moduli and localized stress distributions produced by the FE analyses are given for comparisons, where excellent agreement is always obtained for the 3D microstructures with different geometrical and material properties. Finally, a multi-scale stress analysis of functionally graded composite cylinders is conducted. This extension further increases the FVDAM’s range of applicability and opens new opportunities for pursuing other areas, providing an attractive alternative to the FE-based approaches that may be compared.


Sign in / Sign up

Export Citation Format

Share Document