scholarly journals Passivation Mechanism of Carbon Steel Cerium Salt

Author(s):  
YA-HONG LEI ◽  
CHEN-HUI WU ◽  
JIAN GUO ◽  
XIAO JIAN ◽  
YOU-XIN GAO ◽  
...  
Keyword(s):  
2012 ◽  
Vol 538-541 ◽  
pp. 72-77
Author(s):  
Li Li Gao ◽  
Zheng Zhang ◽  
Wei Zhen Wang ◽  
Xiang Yu Hou ◽  
Jing Wang ◽  
...  

An environment-friendly pre-film for carbon steel was obtained by using seawater with cerium salt. The influencing factors of cerium salt pre-film were discussed through orthogonal experiments, and the optimum processing parameters were confirmed. Then morphology, composition, the forming process and corrosion resistance of the pre-film were investigated. Analysis by digital microscope showed that the cerium salt pre-film was a blue uniform coating. EDS images displayed that the pre-film consisted of Ce, O and Fe, the major component of the protective layer was a mixture of Ce oxide, Ce hydroxide and Fe hydroxide. The results of electrochemical potentiodynamic polarization and gravimetric measurements indicated that the cerium salt pre-film provided effective protection to the substrate of carbon steel.


2018 ◽  
Vol 56 (3B) ◽  
pp. 96
Author(s):  
Anh Son Nguyen ◽  
Thuy Duong Nguyen ◽  
Thu Thuy Thai

The presence work investigates the corrosion protection of waterborne epoxy coatings containing CeO2 nanoparticles activated with cerium salt for the carbon steel substrates. First, the dispersion of activated nanoparticles in the epoxy matrix was observed by field emission scanning electron microscopy (FESEM). The electrochemical impedance spectroscopy (EIS) was carried out to evaluate the role of the activated-CeO2 nanoparticles in the organic coatings immersed in a 0.5 M NaCl solution. Thus, the effect of the cerium ion activated ceria nanoparticles on the coatings presented the artificial defect in the aggressive environment was examined via salt spray test. Complementary studies were performed using the cross-cut and pull-off test to assess the adherence properties of the samples. Results revealed that the presence of activated-CeO2 nanoparticles enhanced corrosion protection properties of waterborne epoxy coating without losing adherence properties.


Author(s):  
Yahong Lei ◽  
Jian Guo ◽  
Chenhui Wu ◽  
Jie Li ◽  
Xin Gao ◽  
...  

Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


2001 ◽  
Vol 81 (12) ◽  
pp. 2797-2808
Author(s):  
Rustem Bagramov, Daniele Mari, Willy Benoi

1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2020 ◽  
Vol 65 (1) ◽  
pp. 77-82
Author(s):  
Simona CAPRARESCU ◽  
◽  
Violeta PURCAR ◽  
Cristina MODROGAN ◽  
◽  
...  

2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

Sign in / Sign up

Export Citation Format

Share Document