scholarly journals Research on Lightweight Optimization for Clamping Molding Tail Plate of Large Scale Die Casting Machine

Author(s):  
Hua-Wei ZHANG ◽  
Min CHEN ◽  
Lan-Zhi LIANG ◽  
Zhi-Heng WU ◽  
Zhuang-Zhi YU
2022 ◽  
Vol 327 ◽  
pp. 163-171
Author(s):  
Ming Fan Qi ◽  
Yong Lin Kang ◽  
Yuan Hao Zheng ◽  
Ji Cheng Wang ◽  
Gu Nan Li ◽  
...  

An efficient and low-cost aluminum alloy uniform solidification control technology, namely, air-cooled stirring rod (ACSR) process, has been developed for preparing large volume semisolid slurry. The semisolid slurry preparation process is connected with the die-casting machine to form multiple integrated intelligent rheological die-casting production lines for the efficient preparation of rheological die-casting of large-scale thin-walled aluminum alloys. At present, the ACSR process can produce 40 kg of large-volume semisolid slurry with a solid phase ratio of 25% to 35% within 30 s. This rheological die-casting process has been industrialized for the preparation of high-quality aluminum alloy large-scale thin-walled parts, such as new energy vehicles and 5G communications. Typical products produced by this process include heat dissipation housings for 5G communications, filter housings, antenna chassis and three-electric structural shell, end cover, and ABS system valve body for new energy vehicles. Compared with traditional die castings, aluminum alloy castings prepared by the new process not only have fine and spherical microstructures, good surface quality, and fewer internal pores but also enjoys more excellent mechanical properties and thermal conductivity.


2013 ◽  
Vol 278-280 ◽  
pp. 464-468 ◽  
Author(s):  
Li Hua Wang ◽  
Xiang Liu ◽  
Ya Yu Huang

When using Large-scale semi-opened copper mould die-casting machine, it can reduce the shrinkage cavity and porosity, improve the surface roughness and the mechanical properties of the copper mould. But its process parameters are selected by experience, which result in unstable quality of the anode plate copper mould. In this paper, the temperature and stress fields of the copper mould were simulated using finite element method. And the effects of the initial temperature on the copper mould quality were studied further. The preliminary optimization scheme of the die-casting initial temperature was gained, which can provide the foundation for the further process parameters optimization of the copper mould die-casting.


2020 ◽  
Vol 72 (10) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yafei Deng ◽  
Xiaotao Pan ◽  
Guoxun Zeng ◽  
Jie Liu ◽  
Sinong Xiao ◽  
...  

Purpose This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate. Design/methodology/approach Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s. Findings The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C. Originality/value This material has excellent friction properties and is able to maintain this excellent performance at high temperatures. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/


Author(s):  
Andriani Andriani ◽  
Ikhsan Romli

In an industry, the maintenance department plays a very important role in ensuring the smooth production process. The method of machine maintenance with preventive maintenance is a strategy that can be used to repair existing machines. This is related to proper and regular maintenance can improve engine performance and reduce the level of engine damage which will increase the continuity of production activities. In the die casting division of PT Astra Honda Motor in the observation on the die casting machine 07 there were 45 times damage to the ladle component and 11 times the damage to the auto spray component. These two components are critical components of the 07 die casting machine. After testing the compatibility index and the good compatibility of the damage time data and repair time data to obtain distribution data distribution patterns, obtain the tablespoon component MTTF assessment results of 107,833 hours and auto spray components amounting to 314,226 hours. Whereas the MTTR value of the spoon component is 0.385 hours and the auto spray component is 0.766 hours. The next step is to look for critical component replacement time intervals with the age replacement model, to further review whether it is related to increased reliability, decrease in total downtime, and cost savings before preventive maintenance is carried out and after preventive maintenance is carried out.


2011 ◽  
Vol 383-390 ◽  
pp. 707-711
Author(s):  
Hong Yan ◽  
Yong Hu ◽  
Xiao Quan Wu

Magnesium alloys have high specific strength, specific stiffness, excellent thermal conductivity and casting properties, which have a great prospects development in the industry, However, its low plasticity and ductility limited its application. Magnesium matrix composites can effectively improve its performance. Magnesium alloy die-casting is the main forming process, the conventional high-pressure die-casting (HPDC) defects in multi-cavity type, easy to volume gas, non-heat-treated. Compared with HPDC, the rheo-diecasting (RDC) process has been greatly developed for near-net shape components. In this paper, Mg2Si /AM60 composites is fabricated by in-situ synthesis and semi-solid magnesium matrix composites which are rheoformed in the die-casting machine are prepared by mechanical stirring. The results indicate that the microstructure of composites is non-dendritic and Chinese script type Mg2Si are fine distributed. The fundamental morphology of microstructure by HPDC is dendrite and liquid-phase distributed between dendrite irregularly. The RDC samples have close-to-zero porosity, less segregation, the most of semi-solid of microstructure in rheo-diecasting is spherical or as-spherical structure.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 410
Author(s):  
Nagasankar P ◽  
Sathiyamoorthy. V ◽  
Gurusamy. P ◽  
VinothKanna P ◽  
Manibharathi D ◽  
...  

The main objective of this research is to reduce the blowholes by analyzing the factors which are affected during the casting process. The process parameters are optimized and change is made in the design part to reduce the blowhole and to increase the efficiency of the high pressure die casting machines. Product manufactured from every manufacturing process shows some defects. For supplying quality product to the customer these defects must be reduced. In this work, an attempt is made to reduce the rejection due to the blowhole defect is found out through why-why analysis technique. Process capability of current high pressure die casting manufacturing process is checked. Manufacturing process found capable to manufacture the components. Current problem of blowhole defect is solved making an improvement in design of die which we insert. In gate directions are changed so as to obtain modified improved flow pattern. Using magma flow simulationsoftware existing and modified design has then been compared. It is found that, modified design shows superior results and using this, the defect of blowholes is minimized up to satisfactory level.   


Sign in / Sign up

Export Citation Format

Share Document