scholarly journals Properties of Kinetic Energy Horizontal Gradient of Multilevel Barotropic Atmosphere

Author(s):  
Juan Zhu ◽  
Jie Yu ◽  
Ming Zhang
Author(s):  
Youyu Lu ◽  
Jiaxing Li ◽  
Ji Lei

The model simulated meso-scale eddies in the Northeast Pacific Ocean, using two models with nominal horizontal resolutions of 1/12° and 1/36° in latitude/longitude (grid spacing of 7.5 km and 2.5 km), respectively, are presented. Compared with the 1/12° model, the 1/36° model obtains (1) similar variance and wavenumber spectra of  the sea level anomaly and water temperature anomaly, and (2) increases in the level of the domain-averaged total kinetic energy, eddy kinetic energy (EKE), and variance of horizontal gradient of water temperature. In the interior basin of the southern region, both models show stronger eddy frontal activities, represented by EKE, temperature and its horizontal gradient, in summer and fall than in winter and spring. The challenge of evaluating the realism of high-resolution ocean models with conventional satellite remote sensing observations is discussed.


2008 ◽  
Vol 15 ◽  
pp. 17-22 ◽  
Author(s):  
M. V. Kurgansky

Abstract. In a forced-dissipative barotropic model of the atmosphere on a spherical planet, by following mathematical techniques in (Thompson, P. D.: The equilibrium energy spectrum of randomly forced two-dimensional turbulence, Journal of the Atmospheric Sciences, 30, 1593–1598, 1973) but applying them in a novel context of the discrete spectrum on a rotating sphere, the "minus 2" energy spectrum for wavenumbers much greater than a characteristic wavenumber of the baroclinic forcing has been obtained if the forcing is taken in the simplest and most fundamental form. Some observation-based atmospheric kinetic energy spectra, with their slopes lying between "minus 2" and "minus 3" laws, are discussed from the perspective of the deduced "minus 2" energy spectrum.


2008 ◽  
Vol 38 (8) ◽  
pp. 1807-1819 ◽  
Author(s):  
Paola Cessi

Abstract A parameterization for eddy buoyancy fluxes for use in coarse-grid models is developed and tested against eddy-resolving simulations. The development is based on the assumption that the eddies are adiabatic (except near the surface) and the observation that the flux of buoyancy is affected by barotropic, depth-independent eddies. Like the previous parameterizations of Gent and McWilliams (GM) and Visbeck et al. (VMHS), the horizontal flux of a tracer is proportional to the local large-scale horizontal gradient of the tracer through a transfer coefficient assumed to be given by the product of a typical eddy velocity scale and a typical mixing length. The proposed parameterization differs from GM and VMHS in the selection of the eddy velocity scale, which is based on the kinetic energy balance of baroclinic eddies. The three parameterizations are compared to eddy-resolving computations in a variety of forcing configurations and for several sets of parameters. The VMHS and the energy balance parameterizations perform best in the tests considered here.


Author(s):  
A. D. Kozlov ◽  
Yu. P. Potekhina

Although joints with synovial cavities and articular surfaces are very variable, they all have one common peculiarity. In most cases, one of the articular surfaces is concave, whereas the other one is convex. During the formation of a joint, the epiphysis, which has less kinetic energy during the movements in the joint, forms a convex surface, whereas large kinetic energy forms the epiphysis with a concave surface. Basing on this concept, the analysis of the structure of the joints, allows to determine forces involved into their formation, and to identify the general patterns of the formation of the skeleton.


Sign in / Sign up

Export Citation Format

Share Document