A Robust Data-Driven Approach for the Newsvendor Problem with Nonparametric Information

Author(s):  
Liang Xu ◽  
Yi Zheng ◽  
Li Jiang

Problem definition: For the standard newsvendor problem with an unknown demand distribution, we develop an approach that uses data input to construct a distribution ambiguity set with the nonparametric characteristics of the true distribution, and we use it to make robust decisions. Academic/practical relevance: Empirical approach relies on historical data to estimate the true distribution. Although the estimated distribution converges to the true distribution, its performance with limited data is not guaranteed. Our approach generates robust decisions from a distribution ambiguity set that is constructed by data-driven estimators for nonparametric characteristics and includes the true distribution with the desired probability. It fits situations where data size is small. Methodology: We apply a robust optimization approach with nonparametric information. Results: Under a fixed method to partition the support of the demand, we construct a distribution ambiguity set, build a protection curve as a proxy for the worst-case distribution in the set, and use it to obtain a robust stocking quantity in closed form. Implementation-wise, we develop an adaptive method to continuously feed data to update partitions with a prespecified confidence level in their unbiasedness and adjust the protection curve to obtain robust decisions. We theoretically and experimentally compare the proposed approach with existing approaches. Managerial implications: Our nonparametric approach under adaptive partitioning guarantees that the realized average profit exceeds the worst-case expected profit with a high probability. Using real data sets from Kaggle.com, it can outperform existing approaches in yielding profit rate and stabilizing the generated profits, and the advantages are more prominent as the service ratio decreases. Nonparametric information is more valuable than parametric information in profit generation provided that the service requirement is not too high. Moreover, our proposed approach provides a means of combining nonparametric and parametric information in a robust optimization framework.

Author(s):  
Shixin Wang ◽  
Xuan Wang ◽  
Jiawei Zhang

Problem definition: The theoretical investigation of the effectiveness of limited flexibility has mainly focused on a performance metric that is based on the maximum sales in units. However, this could lead to substantial profit losses when the maximum sales metric is used to guide flexibility designs while the products have considerably large profit margin differences. Academic/practical relevance: We address this issue by introducing margin differentials into the analysis of process flexibility designs, and our results can provide useful guidelines for the evaluation and design of flexibility configurations when the products have heterogeneous margins. Methodology: We adopt a robust optimization framework and study process flexibility designs from the worst-case perspective by introducing the dual margin group index (DMGI). Results and managerial implications: We show that a general class of worst-case performance measures can be expressed as functions of a design’s DMGIs and the given uncertainty set. Moreover, the DMGIs lead to a partial ordering that enables us to compare the worst-case performance of different designs. Applying these results, we prove that under the so-called partwise independently symmetric uncertainty sets and a broad class of worst-case performance measures, the alternate long-chain design is optimal among all long-chain designs with equal numbers of high-profit products and low-profit products. Finally, we develop a heuristic based on the DMGIs to generate effective flexibility designs when products exhibit margin differentials.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ying Kou ◽  
Zhong Wan

<p style='text-indent:20px;'>A newsboy problem is a typical stochastic inventory management problem and has extensive applications in the fields of operational research, management sciences and marketing sciences. One of the challenges underlying such problems is to handle the uncertainty of demands. In the existing results, it is often to assume that the demand distribution is given to facilitate solution of the problems. In this paper, a novel data-driven robust optimization model for solving multi-item newsboy problems is proposed by combining the absolute robust optimization with a data-driven uncertainty set, and the latter is leveraged to address the uncertainty of demands. For the single-item situation, a closed-form solution is obtained and influences of parameters on the optimal solutions are analyzed. Owing to complexity of the multi-item situation, a uniform smoothing function is leveraged to smooth the proposed model. Then, an algorithm, called a modified Frank-Wolfe feasible direction algorithm, is developed to solve a series of smooth subproblems. Numerical simulation demonstrates that the proposed model in this paper can reduce over-conservation of robust optimization methods and is more robust than other similar well-established methods in the literature. By numerical simulation and sensitivity analysis, it is concluded that: (1) The proposed method can provide more stable optimal order policy and profits than the existing ones; (2) For a product with a higher unit purchase price, the optimal order quantities are more sensitive to its change; (3) In view of profitability, the newsboy should not to be too risk-averse.</p>


2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121647
Author(s):  
Jian Long ◽  
Siyi Jiang ◽  
Renchu He ◽  
Liang Zhao

2020 ◽  
Vol 22 (5) ◽  
pp. 958-974 ◽  
Author(s):  
Chaithanya Bandi ◽  
Diwakar Gupta

Problem definition: We consider two problems faced by an operating room (OR) manager: (1) how many baseline (core) staff to hire for OR suites, and (2) how to schedule surgery requests that arrive one by one. The OR manager has access to historical case count and case length data, and needs to balance the fixed cost of baseline staff and variable cost of overtime, while satisfying surgeons’ preferences. Academic/practical relevance: ORs are costly to operate and generate about 70% of hospitals’ revenues from surgical operations and subsequent hospitalizations. Because hospitals are increasingly under pressure to reduce costs, it is important to make staffing and scheduling decisions in an optimal manner. Also, hospitals need to leverage data when developing algorithmic solutions, and model tradeoffs between staffing costs and surgeons’ preferences. We present a methodology for doing so, and test it on real data from a hospital. Methodology: We propose a new criterion called the robust competitive ratio for designing online algorithms. Using this criterion and a robust optimization approach to model the uncertainty in case mix and case lengths, we develop tractable optimization formulations to solve the staffing and scheduling problems. Results: For the staffing problem, we show that algorithms belonging to the class of interval classification algorithms achieve the best robust competitive ratio, and develop a tractable approach for calculating the optimal parameters of our proposed algorithm. For the scheduling phase, which occurs one or two days before each surgery day, we demonstrate how a robust optimization framework may be used to find implementable schedules while taking into account surgeons’ preferences such as back-to-back and same-OR scheduling of cases. We also perform numerical experiments with real and synthetic data, which show that our approach can significantly reduce total staffing cost. Managerial implications: We present algorithms that are easy to implement and tractable. These algorithms also allow the OR manager to specify the size of the uncertainty set and to control overtime costs while meeting surgeons’ preferences.


Author(s):  
Eliot Rudnick-Cohen ◽  
Jeffrey W. Herrmann ◽  
Shapour Azarm

Feasibility robust optimization techniques solve optimization problems with uncertain parameters that appear only in their constraint functions. Solving such problems requires finding an optimal solution that is feasible for all realizations of the uncertain parameters. This paper presents a new feasibility robust optimization approach involving uncertain parameters defined on continuous domains without any known probability distributions. The proposed approach integrates a new sampling-based scenario generation scheme with a new scenario reduction approach in order to solve feasibility robust optimization problems. An analysis of the computational cost of the proposed approach was performed to provide worst case bounds on its computational cost. The new proposed approach was applied to three test problems and compared against other scenario-based robust optimization approaches. A test was conducted on one of the test problems to demonstrate that the computational cost of the proposed approach does not significantly increase as additional uncertain parameters are introduced. The results show that the proposed approach converges to a robust solution faster than conventional robust optimization approaches that discretize the uncertain parameters.


2013 ◽  
Vol 25 (3) ◽  
pp. 759-804 ◽  
Author(s):  
Akiko Takeda ◽  
Hiroyuki Mitsugi ◽  
Takafumi Kanamori

A wide variety of machine learning algorithms such as the support vector machine (SVM), minimax probability machine (MPM), and Fisher discriminant analysis (FDA) exist for binary classification. The purpose of this letter is to provide a unified classification model that includes these models through a robust optimization approach. This unified model has several benefits. One is that the extensions and improvements intended for SVMs become applicable to MPM and FDA, and vice versa. For example, we can obtain nonconvex variants of MPM and FDA by mimicking Perez-Cruz, Weston, Hermann, and Schölkopf's ( 2003 ) extension from convex ν-SVM to nonconvex Eν-SVM. Another benefit is to provide theoretical results concerning these learning methods at once by dealing with the unified model. We give a statistical interpretation of the unified classification model and prove that the model is a good approximation for the worst-case minimization of an expected loss with respect to the uncertain probability distribution. We also propose a nonconvex optimization algorithm that can be applied to nonconvex variants of existing learning methods and show promising numerical results.


Sign in / Sign up

Export Citation Format

Share Document