Operating Room Staffing and Scheduling

2020 ◽  
Vol 22 (5) ◽  
pp. 958-974 ◽  
Author(s):  
Chaithanya Bandi ◽  
Diwakar Gupta

Problem definition: We consider two problems faced by an operating room (OR) manager: (1) how many baseline (core) staff to hire for OR suites, and (2) how to schedule surgery requests that arrive one by one. The OR manager has access to historical case count and case length data, and needs to balance the fixed cost of baseline staff and variable cost of overtime, while satisfying surgeons’ preferences. Academic/practical relevance: ORs are costly to operate and generate about 70% of hospitals’ revenues from surgical operations and subsequent hospitalizations. Because hospitals are increasingly under pressure to reduce costs, it is important to make staffing and scheduling decisions in an optimal manner. Also, hospitals need to leverage data when developing algorithmic solutions, and model tradeoffs between staffing costs and surgeons’ preferences. We present a methodology for doing so, and test it on real data from a hospital. Methodology: We propose a new criterion called the robust competitive ratio for designing online algorithms. Using this criterion and a robust optimization approach to model the uncertainty in case mix and case lengths, we develop tractable optimization formulations to solve the staffing and scheduling problems. Results: For the staffing problem, we show that algorithms belonging to the class of interval classification algorithms achieve the best robust competitive ratio, and develop a tractable approach for calculating the optimal parameters of our proposed algorithm. For the scheduling phase, which occurs one or two days before each surgery day, we demonstrate how a robust optimization framework may be used to find implementable schedules while taking into account surgeons’ preferences such as back-to-back and same-OR scheduling of cases. We also perform numerical experiments with real and synthetic data, which show that our approach can significantly reduce total staffing cost. Managerial implications: We present algorithms that are easy to implement and tractable. These algorithms also allow the OR manager to specify the size of the uncertainty set and to control overtime costs while meeting surgeons’ preferences.

Author(s):  
Shixin Wang ◽  
Xuan Wang ◽  
Jiawei Zhang

Problem definition: The theoretical investigation of the effectiveness of limited flexibility has mainly focused on a performance metric that is based on the maximum sales in units. However, this could lead to substantial profit losses when the maximum sales metric is used to guide flexibility designs while the products have considerably large profit margin differences. Academic/practical relevance: We address this issue by introducing margin differentials into the analysis of process flexibility designs, and our results can provide useful guidelines for the evaluation and design of flexibility configurations when the products have heterogeneous margins. Methodology: We adopt a robust optimization framework and study process flexibility designs from the worst-case perspective by introducing the dual margin group index (DMGI). Results and managerial implications: We show that a general class of worst-case performance measures can be expressed as functions of a design’s DMGIs and the given uncertainty set. Moreover, the DMGIs lead to a partial ordering that enables us to compare the worst-case performance of different designs. Applying these results, we prove that under the so-called partwise independently symmetric uncertainty sets and a broad class of worst-case performance measures, the alternate long-chain design is optimal among all long-chain designs with equal numbers of high-profit products and low-profit products. Finally, we develop a heuristic based on the DMGIs to generate effective flexibility designs when products exhibit margin differentials.


Author(s):  
Liang Xu ◽  
Yi Zheng ◽  
Li Jiang

Problem definition: For the standard newsvendor problem with an unknown demand distribution, we develop an approach that uses data input to construct a distribution ambiguity set with the nonparametric characteristics of the true distribution, and we use it to make robust decisions. Academic/practical relevance: Empirical approach relies on historical data to estimate the true distribution. Although the estimated distribution converges to the true distribution, its performance with limited data is not guaranteed. Our approach generates robust decisions from a distribution ambiguity set that is constructed by data-driven estimators for nonparametric characteristics and includes the true distribution with the desired probability. It fits situations where data size is small. Methodology: We apply a robust optimization approach with nonparametric information. Results: Under a fixed method to partition the support of the demand, we construct a distribution ambiguity set, build a protection curve as a proxy for the worst-case distribution in the set, and use it to obtain a robust stocking quantity in closed form. Implementation-wise, we develop an adaptive method to continuously feed data to update partitions with a prespecified confidence level in their unbiasedness and adjust the protection curve to obtain robust decisions. We theoretically and experimentally compare the proposed approach with existing approaches. Managerial implications: Our nonparametric approach under adaptive partitioning guarantees that the realized average profit exceeds the worst-case expected profit with a high probability. Using real data sets from Kaggle.com, it can outperform existing approaches in yielding profit rate and stabilizing the generated profits, and the advantages are more prominent as the service ratio decreases. Nonparametric information is more valuable than parametric information in profit generation provided that the service requirement is not too high. Moreover, our proposed approach provides a means of combining nonparametric and parametric information in a robust optimization framework.


2013 ◽  
Vol 10 (2) ◽  
pp. 115-124
Author(s):  
Philip L. Martin

Japan and the United States, the world’s largest economies for most of the past half century, have very different immigration policies. Japan is the G7 economy most closed to immigrants, while the United States is the large economy most open to immigrants. Both Japan and the United States are debating how immigrants are and can con-tribute to the competitiveness of their economies in the 21st centuries. The papers in this special issue review the employment of and impacts of immigrants in some of the key sectors of the Japanese and US economies, including agriculture, health care, science and engineering, and construction and manufacturing. For example, in Japanese agriculture migrant trainees are a fixed cost to farmers during the three years they are in Japan, while US farmers who hire mostly unauthorized migrants hire and lay off workers as needed, making labour a variable cost.


2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 495
Author(s):  
Jessica Thomsen ◽  
Noha Saad Hussein ◽  
Arnold Dolderer ◽  
Christoph Kost

Due to the high complexity of detailed sector-coupling models, a perfect foresight optimization approach reaches complexity levels that either requires a reduction of covered time-steps or very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used. This paper examines the influence of the foresight horizon on local energy systems using the model DISTRICT. DISTRICT is characterized by its intersectoral approach to a regionally bound energy system with a connection to the superior electricity grid level. It is shown that with the advantage of a significantly reduced run-time, a limited foresight yields fairly similar results when the input parameters show a stable development. With unexpected, shock-like events, limited foresight shows more realistic results since it cannot foresee the sudden parameter changes. In general, the limited foresight approach tends to invest into generation technologies with low variable cost and avoids investing into demand reduction or efficiency with high upfront costs as it cannot compute the benefits over the time span necessary for full cost recovery. These aspects should be considered when choosing the foresight horizon.


Sign in / Sign up

Export Citation Format

Share Document