SYMPOSIUM ON UPPER RESPIRATORY TRACT AND SOME OF THEIR COMPLICATIONS. II. UPPER RESPIRATORY INFECTIONS FROM THE PEDIATRIC STANDPOINT

1935 ◽  
Vol 45 (7) ◽  
pp. 493???498
Author(s):  
Louis C. Schroeder
1934 ◽  
Vol 34 (2) ◽  
pp. 195-202 ◽  
Author(s):  
L. Hoyle

In previous studies of the bacterial flora of the upper respiratory tract and its variations during attacks of acute coryza (Hoyle, 1932), it was found that there was in many cases a striking relationship between the appearance of certain organisms with definite pathogenic properties towards the lower animals, in the upper respiratory tract, and the occurrence of acute infections. This relationship was especially marked in the case of the influenza bacillus, and it was suggested that this organism played a prominent part in the aetiology of upper respiratory infections. The significance of the influenza bacillus in acute coryza has been noted by various workers (Noble, Fisher and Brainard, 1928; Burky and Smillie, 1929; Webster and Clow, 1932; Kneeland and Dawes, 1932), but on the other hand various observers have found the incidence of influenza bacilli in the respiratory tract to be the same in normal health and in acute coryza, and Fleming (1929) and Fleming and Maclean (1930) have devised a technique by means of which they claim to have isolated influenza bacilli in 100 per cent, of normal throats. One possible explanation of these conflicting results may be found in the absence of any very exact criterion of what constitutes a typical influenza bacillus.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cheng Lei ◽  
Lisong Yang ◽  
Cheong Tat Lou ◽  
Fan Yang ◽  
Kin Ian SiTou ◽  
...  

Abstract Background Acute respiratory infections (ARIs) are among the leading causes of hospitalization in children. Understanding the local dominant viral etiologies is important to inform infection control practices and clinical management. This study aimed to investigate the viral etiology and epidemiology of respiratory infections among pediatric inpatients in Macao. Methods A retrospective study using electronic health records between 2014 and 2017 at Kiang Wu Hospital was performed. Nasopharyngeal swab specimens were obtained from hospitalized children aged 13 years or younger with respiratory tract diseases. xMAP multiplex assays were employed to detect respiratory agents including 10 respiratory viruses. Data were analyzed to describe the frequency and seasonality. Results Of the 4880 children enrolled in the study, 3767 (77.1%) were positive for at least one of the 13 viral pathogens tested, of which 2707 (55.5%) being male and 2635 (70.0%) under 2 years old. Among the positive results, there were 3091 (82.0%) single infections and 676 (18.0%) multiple infections. The predominant viruses included human rhinovirus/enterovirus (HRV/EV 27.4%), adenovirus (ADV, 15.8%), respiratory syncytial virus B (RSVB, 7.8%) and respiratory syncytial virus A (RSVA, 7.8%). The detection of viral infection was the most prevalent in autumn (960/1176, 81.6%), followed by spring (1095/1406, 77.9%), winter (768/992, 77.4%), and summer (944/1306, 72.3%), with HRV/EV and ADV being most commonly detected throughout the 4 years of study period. The detection rate of viral infection was highest among ARI patients presented with croup (123/141, 87.2%), followed by lower respiratory tract infection (1924/2356, 81.7%) and upper respiratory tract infection (1720/2383, 72.2%). FluA, FluB and ADV were positive factors for upper respiratory tract infections. On the other hand, infection with RSVA, RSVB, PIV3, PIV4, HMPV, and EV/RHV were positively associated with lower respiratory tract infections; and PIV1, PIV2, and PIV3 were positively associated with croup. Conclusions This is the first study in Macao to determine the viral etiology and epidemiology of pediatric patients hospitalized for ARIs. The study findings can contribute to the awareness of pathogen, appropriate preventative measure, accurate diagnosis, and proper clinical management of respiratory viral infections among children in Macao.


PEDIATRICS ◽  
1998 ◽  
Vol 101 (Supplement_1) ◽  
pp. 163-165 ◽  
Author(s):  
Scott F. Dowell ◽  
S. Michael Marcy ◽  
William R. Phillips ◽  
Michael A. Gerber ◽  
Benjamin Schwartz

This article introduces a set of principles to define judicious antimicrobial use for five conditions that account for the majority of outpatient antimicrobial use in the United States. Data from the National Center for Health Statistics indicate that in recent years, approximately three fourths of all outpatient antibiotics have been prescribed for otitis media, sinusitis, bronchitis, pharyngitis, or nonspecific upper respiratory tract infection.1Antimicrobial drug use rates are highest for children1; therefore, the pediatric age group represents the focus for the present guidelines. The evidence-based principles presented here are focused on situations in which antimicrobial therapy could be curtailed without compromising patient care. They are not formulated as comprehensive management strategies. For most upper respiratory infections that require antimicrobial treatment, there are several appropriate oral agents from which to choose. Although the general principles of selecting narrow-spectrum agents with the fewest side effects and lowest cost are important, the principles that follow include few specific antibiotic selection recommendations.


2019 ◽  
Author(s):  
Laura K Certain ◽  
Miriam B Barshak

Upper respiratory tract infections are the most common maladies experienced by humankind.1 The majority are caused by respiratory viruses. A Dutch case-controlled study of primary care patients with acute respiratory tract infections found that viruses accounted for 58% of cases; rhinovirus was the most common (24%), followed by influenza virus type A (11%) and corona­viruses (7%). Group A streptococcus (GAS) was responsible for 11%, and 3% of patients had mixed infections. Potential pathogens were detected in 30% of control patients who were free of acute respiratory symptoms; rhinovirus was the most common.2 Given the increasing problem of antibiotic resistance and the increasing awareness of the importance of a healthy microbiome, antibiotic use for upper respiratory infections should be reserved for those patients with clear indications for treatment. A recent study of adult outpatient visits in the United States found that respiratory complaints accounted for 150 antibiotic prescriptions per 1,000 population annually, yet the expected “appropriate” rate would be 45.3 In other words, most antibiotic prescriptions for these complaints are unnecessary. Similarly, a study in the United Kingdom found that general practitioners prescribed antibiotics to about half of all patients presenting with an upper respiratory infection, even though most of these infections are viral.4 This review contains 5 figures, 16 tables, and 82 references. Keywords: infection, airway, sinusitis, otitis media, otitis externa, pharyngitis, epiglottitis, abscess


2018 ◽  
Vol 7 (1) ◽  
pp. 1-7
Author(s):  
Aleksandra Paź ◽  
Magdalena Arimowicz

An estimated 50% of antibiotic prescriptions may be unjustified in the outpatient setting. Viruses are responsible for most acute respiratory tract infections. The viral infections are often self-limiting and only symptomatic treatment remains effective. Bacteria are involved in a small percentage of infections etiology in this area. In the case of a justified or documented suspicion of a bacterial infection, antibiotic therapy may be indicated. Based on the Polish „Recommendations for the management of non-hospital respiratory infections 2016”, the indications, the rules of choice, the appropriate dosing schedules and the therapy duration, in the most frequent upper respiratory tract infections in adults, have been presented. Implementation of the presented recommendations regarding our Polish epidemiological situation, will significantly reduce the tendency to abuse antibiotics, and thus will limit the spread of drug-resistant microorganisms.


2021 ◽  
pp. 36-42
Author(s):  
V. M. Svistushkin ◽  
S. V. Morozova ◽  
L. A. Keda

Acute infectious and inflammatory diseases of the upper respiratory tract today belong to the category of the most common pathological conditions. Most often they occur in the form of acute nasopharyngitis, acute rhinosinusitis and acute laryngitis, the clinical of which consists of such symptoms as general weakness, hyperthermia, nasal blockage and nasal discharge, dysosmia, pain and tickling in the throat, cough, dysphonia. The need to select a safe and effective mucoactive therapy justifies the use of the phytopreparation in this pathology, the main active ingredient of which is an extract of ivy leaves. Also in the composition of the drug includes anise oil, peppermint oil, eucalyptus oil and levomenthol. The mechanism of action of is associated with α-hederin contained in ivy leaves. This substance, binding to the beta-adrenoreceptors of the bronchi, causes relaxation of their smooth muscles. In addition, thanks to the saponins contained in the leaves of common ivy, a mucolytic and expectorant effect is achieved. Literature data show that ivy leaf preparations significantly reduce the severity of acute respiratory infections of the upper respiratory tract. Virtually none of the patients had severe side effects. Allergic reactions were recorded in less than 0.5% of cases, with no mention of a severe allergic reaction of the anaphylaxis type. Thus, the drug of plant origin in the form of drops can be successfully used in patients with symptoms of acute respiratory diseases.


1995 ◽  
Vol 113 (5) ◽  
pp. 968-972 ◽  
Author(s):  
Willy Sarti ◽  
Lídia Alice Gomes-Monteiro ◽  
Claudia Saad Magalhães Machado

Forty-six asthmatic children with repeated respiratory infections presented symptoms of allergic rhinitis. All patients were treated locally for allergic rhinitis either with disodium cromoglycate or beclomethasone dipropionate. After six months of treatment, 95% of the children showed improvement of allergic rhinitis and 84% improvement of bronchial asthma, as well as fewer infections. We concluded that allergic rhinitis plays an important role in facilitating infections of the upper respiratory tract, and a possible association of rhinitis, viral infections and bronchial asthma is discussed.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
L. Patrick Schenck ◽  
Joshua J. C. McGrath ◽  
Daphnée Lamarche ◽  
Martin R. Stämpfli ◽  
Dawn M. E. Bowdish ◽  
...  

ABSTRACT Respiratory infections are a leading cause of morbidity and mortality worldwide. Bacterial pathogens often colonize the upper respiratory tract (nose or mouth) prior to causing lower respiratory infections or invasive disease. Interactions within the upper respiratory tract between colonizing bacteria and the resident microbiota could contribute to colonization success and subsequent transmission. Human carriage studies have identified associations between pathogens such as Streptococcus pneumoniae and members of the resident microbiota, although few mechanisms of competition and cooperation have been identified and would be aided by the use of animal models. Little is known about the composition of the murine nasal microbiota; thus, we set out to improve assessment, including tissue sampling, composition, and comparison between mouse sources. Nasal washes were efficient in sampling the nasopharyngeal space but barely disrupted the nasal turbinates. Nasal tissue extraction increased the yield of cultivable bacterial compared to nasal washes, revealing distinct community compositions. Experimental pneumococcal colonization led to dominance by the colonizing pathogen in the nasopharynx and nasal turbinates, but the composition of the microbiota, and interactions with resident microbes, differed depending on the sampling method. Importantly, vendor source has a large impact on microbial composition. Bacterial interactions, including cooperation and colonization resistance, depend on the biogeography of the nose and should be considered during research design of experimental colonization with pathogens. IMPORTANCE The nasal microbiota is composed of species that play a role in the colonization success of pathogens, including Streptococcus pneumoniae and Staphylococcus aureus. Murine models provide the ability to explore disease pathogenesis, but little is known about the natural murine nasal microbiota. This study established techniques to allow the exploration of the bacterial members of the nasal microbiota. The mouse nasal microbiota included traditional respiratory bacteria, including Streptococcus, Staphylococcus, and Moraxella species. Analyses were affected by different sampling methods as well as the commercial source of the mice, which should be included in future research design of infectious disease research.


Sign in / Sign up

Export Citation Format

Share Document