scholarly journals Cost-Benefit Analysis of Using Recycled Coarse Aggregate In Plain and Fiber Reinforced Concrete

2021 ◽  
Vol 15 (3) ◽  
pp. 233-242
Author(s):  
Ganesh Awchat
2014 ◽  
Vol 1055 ◽  
pp. 23-26
Author(s):  
Can Xu

In the original to remove steel and steel fiber reinforced concrete coarse aggregate in quartz powder and a small amount of activator, can boost steel fiber content, and its application in construction makes it more convenient, but how the penetration resistance works is not particularly clear. Through the penetration resistance experiment, found that when joined the SF and BF, RPC can still keep complete even after three times by penetration ,indicating the good performance of penetration resistance.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5202
Author(s):  
Mohammad Iqbal Khan ◽  
Wasim Abbass ◽  
Mohammad Alrubaidi ◽  
Fahad K. Alqahtani

High-strength concrete is used to provide quality control for concrete structures, yet it has the drawback of brittleness. The inclusion of fibers improves the ductility of concrete but negatively affects the fresh properties of fiber-reinforced concrete. The effects of different fine to coarse aggregate ratios on the fresh and hardened properties of steel fiber reinforced concrete were investigated in this study. Mixtures were prepared with various fine to coarse aggregate (FA/CA) ratios incorporating 1% steel fiber content (by volume) at constant water to cement ratio. The workability, unit weight, and temperature of the concrete in the fresh state, and the mechanical properties of steel-fiber-reinforced concrete (SFRC) were investigated. The inclusion of fiber in concrete influenced the mobility of concrete in the fresh state by acting as a barrier to the movement of coarse aggregate. It was observed that the concrete with an FA/CA ratio above 0.8 showed better flowability in the fresh state, whilst an above 0.9 FA/CA ratio requires excessive superplasticizer to maintain the flowability of the mixtures. The compressive and flexural strength of SFRC increased with an increase in the FA/CA ratio by around 10% and 28%, respectively. Experimental values of compressive strength and flexural strength showed good agreement, however, modulus of elasticity demonstrated slightly higher values. The experimentally obtained measurements of the mechanical properties of SFRC conformed reasonably well with the available existing prediction equations, and further enabled establishing predictive isoresponse interactive equations within the scope of the investigation domain.


2021 ◽  
Vol 20 (1) ◽  
pp. 62-90
Author(s):  
J. Vinotha Jenifer ◽  
◽  
D. Brindha ◽  

The conventional concrete is considered to be critical in various constructional applications due to its setbacks such as service load failures, brittle property, low ductility and low tensile capacity. Apart from the natural bridging mechanism (aggregate bridging), an additional bridging mechanism is necessary to overcome the existing setbacks in plain cement concrete. Thus concrete with one or more types of fibers in suitable combinations can augment the mechanical performance of concrete causing a positive synergy effect. Along with the two control mixes with and without copper slag as partial replacement of fine aggregate, two different groups of hybrid combination of fibers such as steel and basalt were cast with 3 different groups of coarse aggregate proportions of sizes 20 mm and 12.5 mm. The hybridization of fibers is assessed in this study under compression, tension, flexure and fracture. Stress-strain data were recorded under compression to validate the strain capacity of the mixtures. The mechanical properties were analyzed for the positive hybrid effect and the influencing factors were copper slag, hybrid fiber combination and coarse aggregate proportions. The optimum volume fraction of fibers and mix proportions were highlighted based on various behaviors of concrete. Steel as macro fibers and basalt as microfibers were examined under microstructural studies (SEM and EDX). The results from the flexural toughness showcased the potential of hybrid fibers with greater energy absorption capacity ensuring the ductile property of the proposed hybrid fiber reinforced concrete.


2018 ◽  
Vol 9 (2) ◽  
pp. 1
Author(s):  
Mustaqqim Abdul Rahim ◽  
Omi Yanti Pohan ◽  
Mohd Badrul Hisyam Ab Manaf ◽  
Ahmad Nur Aizat Ahmad ◽  
Shahiron Shahidan ◽  
...  

Steel is one of the fibers used in fiber reinforced concrete technology. Steel fibers in concrete help to improve flexural  strength and  crack  resistance. Today,  there  are  critical  shortages of  natural  resources. In  this  research,  waste concrete is being used to produce recycled aggregate. The Recycled Coarse Aggregate (RCA) is partially replaced with the natural coarse aggregate (NCA) in concrete to analyze the mechanical properties of steel fiber reinforced concrete (SFRC). Several tests were conducted, such as compression and flexural tests. Five batches (A, B, C, D and E) of concrete cube and prism samples with different proportions of RCA (0%, 25%, 50%, 75% & 100%) and 1.5% volume fraction of steel fiber were tested, together with one control sample which used 100% NCA and 0% volume fraction of steel fiber. As a result, the control sample achieved 27.32 MPa in compression strength and 0.90 MPa for flexural strength while batch A managed to achieve 48.60 MPa and 1.10  MPa respectively. The cube and prism samples of all batches (A, B, C, D, E) showed decreasing compressive and flexural strength with increasing proportion of RCA in the concrete. Four samples fully achieved more than 20 MPa of compression strength and optimum flexural strength.


Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 158
Author(s):  
Haider M. Al-Baghdadi ◽  
Faiz H. Al-Merib ◽  
Ayoob A. Ibrahim ◽  
Rafea F. Hassan ◽  
Husam H. Hussein

Recently, fiber has been incorporated into concrete mixtures, where its distribution in the concrete matrix helps to improve and enhance the mechanical properties of fiber-reinforced concrete (FRC). The aim of this study is to investigate the influence of steel and synthetic fiber parameters, along with different coarse aggregate maximum sizes (CAMZs) on FRC performance. Additionally, in past research, the empirical relationships among the compressive, tensile, and flexural strengths of plain concrete and FRC were assessed, and correlations between these mechanical properties of FRC were examined. For each CAMZ, four fiber dosages for each fiber type were considered. The results demonstrate the mechanical properties of FRC enhanced as the fiber length increased from 13 mm to 60 mm, the CAMZ increased from 9.5 mm to 37.5 mm, and the ratio of the fiber length to the CAMZ was in the range of 0.35–5.68. All mixtures have been intended to exhibit similar compressive strengths; however, the synthetic/steel fiber advanced the brittleness ratio of specimens with G10, G19, and G38 to approximately 36.8%, 40.7%, and 47.4% greater than the contral specimens, respectively. In addition, from the regression analysis investigation, there are strong correlations from the regression analysis of the mechanical property results of FRC.


Sign in / Sign up

Export Citation Format

Share Document