scholarly journals Yield Response Factor for Onion (Allium Cepa L) Crop Under Deficit Irrigation in Semiarid Tropics of Maharashtra

2015 ◽  
Vol 3 (2) ◽  
pp. 128-136
Author(s):  
R. G Bhagyawant ◽  
S. D Gorantiwar ◽  
S. D Dahiwalkar

The present study deals with the study of yield response factor (Ky) for onion crop cultivated under deficit irrigation for Rahuri region (Maharashra). The field experiment was conducted to determine the yield response factor of the onion (Allium cepa L.) cv. N-2-4-1 crop under the deficit irrigation approach during summer season of 2012 and 2013 at Instructional Farm of the Department of Irrigation and Drainage Engineering, Dr. Annasaheb Shinde College of Agricultural Engineering, Mahatma Phule Krishi Vidyapeeth Rahuri. Experiment was carried out in Randomized Block Design (RBD) with 27 treatments and two replications based on different combinations of the quantity of water stress during different crop growth stages. Water applied per irrigation and soil moisture contents before and after irrigation were monitored throughout the season, while onion bulbs were harvested at the end of season and weighed. Average daily crop water use (crop consumptive use) were estimated from the soil moisture content using the soil moisture depletion method. The seasonal yield response factor (Ky) was obtained by relating relative yield decreases to relative crop water use deficit by the regression analysis. The relative yield decreases of the onion crop were proportionally greater with increase in evapotranspiration deficit. It shows the response of yield with respect to the decrease in water consumption. In other words, it explains the decrease in yield caused by the per unit decrease in water consumption. Seasonal crop response factor for onion crop was determined as 1.58, 1.48 and 1.54 during 2012, 2013 and average of both year (2012 &2013) respectively. The yield response factors developed in this study could be used in irrigation design and scheduling for onion in the study area.

Author(s):  
Ligalem Agegn Asres

Background: For better water resources management in the areas of water shortage for crop production, deficit irrigation is very important. The understanding of the yield response factor to water deficit is crucial for efficient irrigation water management. Deficit irrigation for studying yield response factors is always practiced in the way of stressing the demand of the crops. The present study was done for the determination of the seasonal yield response factor of red Bombay onion variety under Arba Minch agro climate condition. Furthermore, it also examined the effect of furrow irrigation systems on the seasonal yield response factor. Methods: The experiment was conducted from August to November 2019. The experiment had six treatments, which were the combination of two furrow irrigation systems and three irrigation levels. Data were collected for soil moisture before and after each irrigation and bulb yield. The seasonal yield response factors were determined through simple linear regressions using SPSS software. Result: When considering the furrow irrigation system as a factor, the seasonal yield response factor for alternate furrow irrigation system was 1.18 while for paired row furrow irrigation system was 1.07. This red Bombay variety of onion clearly shows more sensitive to water stress for alternative furrow irrigation systems than paired row furrow irrigation systems. Therefore, in the area of water shortage paired row furrow irrigation system is better than alternate furrow irrigation system. The seasonal yield response factor as a wall for red Bombay onion variety in Arba Minch agro-ecological condition was 1.12. Therefore, the red Bombay onion variety in Arba Minch agroclimate condition was sensitive to water stress.


1983 ◽  
Vol 34 (6) ◽  
pp. 661 ◽  
Author(s):  
RJ Lawn

The effect of spatial arrangement and population density on growth, dry matter production, yield and water use of black gram (Vigna mungo cv. Regur), green gram (V. radiata cv. Berken), cowpea (V. unguiculata CPI 28215) and soybean (Glycine rnax CP126671), under irrigated, rain-fed fallowed and rain-fed double-cropped culture was evaluated at Dalby in south-eastern Queensland. Equidistant spacings increased initial rates of leaf area index (LAI) development and crop water use compared with 1-m rows at the same population densities. In the irrigated and rain-fed fallowed treatments, where more water was available for crop growth, both seed yields and total crop water use were higher in the equidistant spacings. However, in the double-cropped treatment, where water availability was limited, there was no yield difference between rows and equidistant spacings, primarily because initially faster growth in the latter was offset by more severe water stress later in the season. Higher population density also increased initial crop growth rate and water use, particularly in the equidistant spacings. However, there was no significant yield response to density, presumably because subsequent competition for light/ water offset initial effects on growth. Although absolute yield differences existed between legume cultivars within cultural treatments, there were no significant differential responses to either spatial arrangement or population density among these four cultivars.


2016 ◽  
Vol 46 (7) ◽  
pp. 1145-1150 ◽  
Author(s):  
Daniel Fonseca de Carvalho ◽  
Dionizio Honório de Oliveira Neto ◽  
Luiz Fernando Felix ◽  
José Guilherme Marinho Guerra ◽  
Conan Ayade Salvador

ABSTRACT: The aim of the present study was to evaluate the effect of different irrigation depths on the yield, water use efficiency (WUE), and yield response factor (Ky) of carrot (cv. 'Brasília') in the edaphoclimatic conditions of Baixada Fluminense, RJ, Brazil. Field trials were conducted in a Red-Yellow Argisol in the 2010-2011period. A randomized block design was used, with 5 treatments (depths) and 4 replicates. Depths were applied by drippers with different flow rates, and the irrigation was managed by time domain reflectometry (TDR) technique. The reference (ETo) and crop (ETc) evapotranspiration depths reached 286.3 and 264.1mm in 2010, and 336.0 and 329.9mm in 2011, respectively. The root yield varied from 30.4 to 68.9t ha-1 as a response to treatments without irrigation and 100% replacement of the soil water depth, respectively. Values for WUE in the carrot crop varied from 15 to 31kg m-3 and the mean Ky value was 0.82. The mean values for Kc were obtained in the initial (0.76), intermediate (1.02), and final (0.96) stages. Carrot crop was influenced by different water depths (treatments) applied, and the highest value for WUE was obtained for 63.4% of soil water replacement.


2017 ◽  
Vol 185 ◽  
pp. 116-125 ◽  
Author(s):  
Xiaoyu Gao ◽  
Yining Bai ◽  
Zailin Huo ◽  
Xu Xu ◽  
Guanhua Huang ◽  
...  

Author(s):  
Pedro Silvério Xavier Pereira ◽  
Rodrigo Fernandes Daros ◽  
Ana Lucia da Silva ◽  
Arnaldo Gonçalves de Campos ◽  
Aloisio Bianchini ◽  
...  

The present work had the objective of evaluating the effects of the spatial variability of the main meteorological elements on soybean yield, variety M7739 IPRO from Monsoy, with an early cycle of 105 days, with sowing at the beginning of October and harvesting at the beginning of the month in February, in two agricultural years (2013/14 and 2014/15) at Santa Luzia farm, located in the municipality of Campo Verde - MT (15º42'28 ''S, 55º19'59'' W, 736 m). The meteorological data of the region were obtained through the 9th district of meteorology (9th DISME) of the National Institute of Meteorology - INMET. The coefficient of culture (kc) was defined following the development stages of the culture. The estimates of evapotranspiration (potential and crop) were determined by the water balance method and the sensitivity coefficients (ky) of the soybean crop were estimated by the expression Ky=(1-Yr/Ym)/(1-ETr/ETm), in which ky = yield response factor; Yr = actual yield of the crop; Ym = maximum yield of the crop; ETr = actual evapotranspiration e ETm = maximum evapotranspiration. The values of Ky were all lower than 1, both for the crop cycle in the 2013/14 crop year and for the crop cycle 2014/15, indicating that the soybean crop is adaptable to water deficit.


Author(s):  
Morteza Goldani ◽  
Mohammad Bannayan ◽  
Fatemeh Yaghoubi

Abstract This two-year study aimed to determine the most appropriate irrigation scheduling and crop water productivity (CWP) of basil plant under controlled conditions in Ferdowsi University of Mashhad, Iran. The experimental layout was a split-plot design with three replications. Three deficit irrigation (DI) levels (DI0: 100%, DI30: 70% and DI60: 40% of the field capacity) and two basil cultivars (Green and Purple) were applied to main and subplots, respectively. The results showed that there was a decrease in yield and an increase in CWP for fresh leaves and fresh and dry herb by decreasing the irrigation water. However, a significant difference between fresh leaves and fresh and dry herb yield of DI0 and DI30 treatment was not observed. The Green basil had higher leaves and herb yield and CWP than other cultivar. A polynomial relationship was stablished between fresh leaves yield and crop evapotranspiration, however the yield response factor (Ky) indicated a linear relationship between the relative reduction in crop evapotranspiration vs. the relative reduction in yield. The Ky values were obtained as 0.70 and 0.76 for Green and Purple basil, respectively. The results revealed that the irrigation regime of 30% water saving could insure acceptable yield of basil plant and increase in CWP, especially for the Green basil cultivar.


Sign in / Sign up

Export Citation Format

Share Document