scholarly journals The Relationship between Interfacial Structure and Welding Strength of Hot Plate Welding Crystalline Polymer

2008 ◽  
Vol 65 (3) ◽  
pp. 235-241 ◽  
Author(s):  
Jianhui QIU ◽  
Hiroki TAKAHATA ◽  
Yudong HUANG ◽  
Yubai PAN
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Krzysztof Wałęsa ◽  
Krzysztof Talaśka ◽  
Dominik Wilczyński ◽  
Jan Górecki ◽  
Dominik Wojtkowiak

AbstractThe paper discusses the topic of butt welding of polyurethane drive belts by the hot plate method in the context of modeling the process of this technological operation. Based on the analysis of the butt welding process, a series of studies of the thermomechanical properties of the material from which the belt is made has been planned. The results will be used for mathematical modeling of the welding process, and in particular its most important phase: the plasticizing operation. On this basis, the study of the compression of cylindrical specimens taken from the belt has been performed at two different speeds. Their result is the relationship between the compressive stress σc and the modulus of longitudinal elasticity Ec at compression and: deformation εc, temperature value T, as well as the compressive velocity vc. In the next step, dynamic viscosity η of the belt material was determined based on the results of dynamic thermomechanical analysis. The research work culminated in the attempts to plasticize the material on a hot plate, in conditions similar to the process of industrial welding. These studies were performed at different speeds vpl, resulting in the correlation between the force required for plasticizing Fpl and the value of the speed of the belt end vpl relative to the hot plate heated to a temperature Tp. The obtained results will be used to formulate a mathematical model of plasticizing the material, based on the selected mechanical deformation models.


2007 ◽  
Vol 2007.43 (0) ◽  
pp. 25-26
Author(s):  
Hiroki TAKAHATA ◽  
Jianhui QIU ◽  
Tetsuo KUMAZAWA ◽  
Makoto KUDO ◽  
Satoru KAMATA

2011 ◽  
Vol 24 (6) ◽  
pp. 777-788 ◽  
Author(s):  
J.Z. Liang

The structure of the interlayer between matrix and inclusions affect directly the mechanical and physical properties of inorganic particulate-filled polymer composites. The interlayer thickness is an important parameter for characterization of the interfacial structure. The effects of the interlayer between the filler particles and matrix on the mechanical properties of polymer composites were analyzed in this article. On the basis of a simplified model of interlayer, an expression for estimating the interlayer thickness ([Formula: see text]) was proposed. In addition, the relationship between the [Formula: see text] and the particle size and its concentration was discussed. The results showed that the calculations of the [Formula: see text] and thickness/particle diameter ratio ([Formula: see text]) increased nonlinearly with an increase of the volume fraction of the inclusions. Moreover, the predictions of [Formula: see text] and the relevant data reported in literature were compared, and good agreement was found between them.


Author(s):  
Peter F. Baumann ◽  
Lucas Sendrowski

Large recycled high-density polyethylene (HDPE) structural members, difficult to manufacture by extrusion processes, have been created by the hot plate welding of simple plastic lumber sections. Hot plate welding generates better joint strength than any other welding method currently employed in plastic manufacturing. However, to achieve the desired temperature of the thick plate to melt the polymer uniformly, the process needs a high amount of heat energy requiring furnace (or resistance) heating of a considerable mass. A new method which could combine the heating element and a thin plate into one source could be more efficient in terms of heat loss and thus energy used. The premise of this investigation is to replace the hot plate with a very thin piece of high resistance nickel-chromium alloy ribbon to localize the application of heat within a plastic weld joint in order to reduce energy loss and its associated costs. This resistance ribbon method uses electrical current to reach an adequate temperature to allow for the welding of the HDPE plastic. The ribbon is only slightly larger than the welding surface and very thin to reduce the loss of excess heat through unused surface area and thick sides. The purpose of this project was to weld recycled high-density polyethylene (HDPE) using resistance welding and to match the tensile strength results considered acceptable in industry for hot plate welding, that is, equal to or greater than 80% of the base material strength. Information obtained through literature review and previous investigations in our laboratories established welding (heating) temperature and time as testing factors. Designed experimentation considered these factors in optimizing the process to maximize the weld tensile strength. A wide-ranging full-factorial experimental design using many levels was created for the initial testing plan. Tensile strengths obtained after welding under the various condition combinations of weld temperature and time revealed a region of higher strength values in the response surface. After the wide-range initial testing, the two control parameters, heating temperature and heating time, were ultimately set up in a focused Face Centered Cubic (FCC) Response Surface Method (RSM) testing design and the tensile strength response was then analyzed using statistical software. The results obtained indicated a strong correlation between heating time and heating temperature with strength. All welded samples in the final testing set exhibited tensile strength of over 90% base material, meeting the goal requirements. A full quadratic equation relationship for tensile strength as a function of welding time and temperature was developed and the maximum tensile strength was achieved when using 280°C for 60 seconds.


1990 ◽  
Vol 215 ◽  
Author(s):  
K. Nishii ◽  
M. Usui ◽  
T. Muraya ◽  
K. Kimura

Polymer blend technology is attractive from the standpoint of both science and industry, and many combinations have been studied. Recently, the polymer blends, including liquid crystalline polymer, have been especially worthy of notice, [1,2,3]. In order to obtain materials with a high mechanical strength and moldability for use in thin molded items, we chose polyamide (PA)-liquid crystalline polymer (LCP) blends. In this study, we first measured the mechanical properties, then studied the features of the polymer structure. We also examined the relationship between morphology and mechanical properties. As a result, we found that the mechanical properties of the blends depended largely on blend morphology, and that mechanical strength increased as blend compatibility increased. On the other hand, we also found that the blends showed compatible and microheterogeneous dispersion at less than 25 wt% LCP, while at more than 30 wt% LCP, blends tended to show twophase separation.


2019 ◽  
Vol 52 (2) ◽  
pp. 117-141
Author(s):  
K Mathiyazhagan ◽  
Krishna Kumar Singh ◽  
V Sivabharathi

Application of plastics is increasing day by day since plastics offer many distinct advantages as compared to metals. Plastics has mainly good thermal and electrical insulation properties, corrosion resistance, chemical inertness, and high strength to weight ratio. Additionally, these are cheaper in cost as compared to conventional materials. Plastics are additionally easy to process. Nowadays, product requirements are getting critical and thus product design is getting more complex in shape. To manufacture intricate complex shape creates complexity in manufacturing process which is sometimes very difficult or almost not feasible to produce with single manufacturing process. To manufacture such critical products, welding is a complimentary process. Type of weld joint and welding process can be selected based on the product design and load application on the product. Hot plate welding is very simple welding process as compared to other plastic welding process and most commonly used. Good quality weld is the prime objective of welding process. Weld strength is dependent on several parameters which may be process parameters as well as product parameters. The objective of this study is to identify the key parameters in hot plate welding process of the plastics using Decision Making Trial and Evaluation Laboratory which is one of the prioritization techniques. Results of the study focus on understanding the key parameters affecting the weld strength. Study shows that hot plate temperature, welding time, and melting time are the key parameters affecting the weld strength.


1980 ◽  
Vol 20 (6) ◽  
pp. 432-440 ◽  
Author(s):  
C. B. Bucknall ◽  
I. C. Drinkwater ◽  
G. R. Smith

Sign in / Sign up

Export Citation Format

Share Document