scholarly journals NMR Studies of Cation Induced Conformational Changes in Anionic Biopolymers at the Endothelium-Blood Interface

1991 ◽  
Vol 23 (5) ◽  
pp. 697-708 ◽  
Author(s):  
G Siegel ◽  
A Walter ◽  
K Rückborn ◽  
E Buddecke ◽  
A Schmidt ◽  
...  
2011 ◽  
Vol 7 ◽  
pp. 1205-1214 ◽  
Author(s):  
Damjan Makuc ◽  
Jennifer R Hiscock ◽  
Mark E Light ◽  
Philip A Gale ◽  
Janez Plavec

The conformational properties of 1,3-diindolylureas and thioureas were studied by a combination of heteronuclear NMR spectroscopy and quantum mechanics calculations. NOE experiments showed that the anti–anti conformer along the C7–N7α bonds was predominant in DMSO-d 6 solution in the absence of anions. Anion-induced changes in the 1H and 15N chemical shifts confirm the weak binding of chloride anions with negligible conformational changes. Strong deshielding of ureido protons and moderate deshielding of indole NH was observed upon the addition of acetate, benzoate, bicarbonate and dihydrogen phosphate, which indicated that the predominant hydrogen bond interactions occurred at the urea donor groups. Binding of oxo-anions caused conformational changes along the C7–N7α bonds and the syn–syn conformer was preferred for anion–receptor complexes. The conformational changes upon anion binding are in good agreement with energetic preferences established by ab initio calculations.


1995 ◽  
Vol 3 (6) ◽  
pp. 795-809 ◽  
Author(s):  
Xiaolian Gao ◽  
Adonis Stassinopoulos ◽  
Juan Gu ◽  
Irving H. Goldberg

FEBS Letters ◽  
2019 ◽  
Vol 593 (10) ◽  
pp. 1113-1121 ◽  
Author(s):  
Wanhui Hu ◽  
Huixia Wang ◽  
Yaguang Hou ◽  
Yimei Hao ◽  
Dongsheng Liu

2019 ◽  
Vol 11 (14) ◽  
pp. 1811-1825 ◽  
Author(s):  
Claire Raingeval ◽  
Isabelle Krimm

In this review, we report NMR studies of ligand–GPCR interactions, including both ligand-observed and protein-observed NMR experiments. Published studies exemplify how NMR can be used as a powerful tool to design novel GPCR ligands and investigate the ligand-induced conformational changes of GPCRs. The strength of NMR also lies in its capability to explore the diverse signaling pathways and probe the allosteric modulation of these highly dynamic receptors. By offering unique opportunities for the identification, structural and functional characterization of GPCR ligands, NMR will likely play a major role for the generation of novel molecules both as new tools for the understanding of the GPCR function and as therapeutic compounds for a large diversity of pathologies.


2020 ◽  
Vol 21 (7) ◽  
pp. 2527 ◽  
Author(s):  
Qingxin Li ◽  
CongBao Kang

Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.


2019 ◽  
Vol 20 (1) ◽  
pp. 139 ◽  
Author(s):  
CongBao Kang

In-cell nuclear magnetic resonance (NMR) is a method to provide the structural information of a target at an atomic level under physiological conditions and a full view of the conformational changes of a protein caused by ligand binding, post-translational modifications or protein–protein interactions in living cells. Previous in-cell NMR studies have focused on proteins that were overexpressed in bacterial cells and isotopically labeled proteins injected into oocytes of Xenopus laevis or delivered into human cells. Applications of in-cell NMR in probing protein modifications, conformational changes and ligand bindings have been carried out in mammalian cells by monitoring isotopically labeled proteins overexpressed in living cells. The available protocols and successful examples encourage wide applications of this technique in different fields such as drug discovery. Despite the challenges in this method, progress has been made in recent years. In this review, applications of in-cell NMR are summarized. The successful applications of this method in mammalian and bacterial cells make it feasible to play important roles in drug discovery, especially in the step of target engagement.


Langmuir ◽  
1997 ◽  
Vol 13 (21) ◽  
pp. 5577-5582 ◽  
Author(s):  
Piyali Goon ◽  
S. Das ◽  
C. J. Clemett ◽  
G. J. T. Tiddy ◽  
V. V. Kumar

1982 ◽  
Vol 87 (2) ◽  
pp. 527-536 ◽  
Author(s):  
Hirofumi Okabayashi ◽  
Tadayoshi Yoshida ◽  
Yukimasa Terada ◽  
Kazuhiro Matsushita

2003 ◽  
Vol 56 (5) ◽  
pp. 349 ◽  
Author(s):  
Tong-Lay Lau ◽  
Kevin J. Barnham ◽  
Cyril C. Curtain ◽  
Colin L. Masters ◽  
Frances Separovic

The deposition of senile plaques is a characteristic event in the progression of Alzheimer's disease (AD). Associated with the progression of the disease, the main component of the deposited material, the β-amyloid peptide (Aβ), undergoes a structural transition and a toxic gain of function. For this reason, extensive structural studies of Aβ and Aβ fragments have been carried out in order to determine the relationship between neurotoxicity and conformational changes of the peptide that lead to fibril formation. NMR studies in aqueous solution and in membrane-mimicking environments are reviewed, and include the effects of temperature, pH, and metal ions on Aβ structure. In addition, electron paramagnetic resonance (EPR) studies of Aβ in model membranes and the effect of metals of Aβ are discussed and demonstrate the pleiomorphic nature of the peptide. The contradictory results obtained from the various experiments are a result of studying different fragments of Aβ and illustrate the importance of studying the full-length peptide.


Sign in / Sign up

Export Citation Format

Share Document