NMR studies of the post-activated neocarzinostatin chromophore-DNA complex. Conformational changes induced in drug and DNA

1995 ◽  
Vol 3 (6) ◽  
pp. 795-809 ◽  
Author(s):  
Xiaolian Gao ◽  
Adonis Stassinopoulos ◽  
Juan Gu ◽  
Irving H. Goldberg
2011 ◽  
Vol 7 ◽  
pp. 1205-1214 ◽  
Author(s):  
Damjan Makuc ◽  
Jennifer R Hiscock ◽  
Mark E Light ◽  
Philip A Gale ◽  
Janez Plavec

The conformational properties of 1,3-diindolylureas and thioureas were studied by a combination of heteronuclear NMR spectroscopy and quantum mechanics calculations. NOE experiments showed that the anti–anti conformer along the C7–N7α bonds was predominant in DMSO-d 6 solution in the absence of anions. Anion-induced changes in the 1H and 15N chemical shifts confirm the weak binding of chloride anions with negligible conformational changes. Strong deshielding of ureido protons and moderate deshielding of indole NH was observed upon the addition of acetate, benzoate, bicarbonate and dihydrogen phosphate, which indicated that the predominant hydrogen bond interactions occurred at the urea donor groups. Binding of oxo-anions caused conformational changes along the C7–N7α bonds and the syn–syn conformer was preferred for anion–receptor complexes. The conformational changes upon anion binding are in good agreement with energetic preferences established by ab initio calculations.


FEBS Letters ◽  
2019 ◽  
Vol 593 (10) ◽  
pp. 1113-1121 ◽  
Author(s):  
Wanhui Hu ◽  
Huixia Wang ◽  
Yaguang Hou ◽  
Yimei Hao ◽  
Dongsheng Liu

2020 ◽  
Vol 295 (27) ◽  
pp. 9012-9020
Author(s):  
Carel Fijen ◽  
Mariam M. Mahmoud ◽  
Meike Kronenberg ◽  
Rebecca Kaup ◽  
Mattia Fontana ◽  
...  

Eukaryotic DNA polymerase β (Pol β) plays an important role in cellular DNA repair, as it fills short gaps in dsDNA that result from removal of damaged bases. Since defects in DNA repair may lead to cancer and genetic instabilities, Pol β has been extensively studied, especially its mechanisms for substrate binding and a fidelity-related conformational change referred to as “fingers closing.” Here, we applied single-molecule FRET to measure distance changes associated with DNA binding and prechemistry fingers movement of human Pol β. First, using a doubly labeled DNA construct, we show that Pol β bends the gapped DNA substrate less than indicated by previously reported crystal structures. Second, using acceptor-labeled Pol β and donor-labeled DNA, we visualized dynamic fingers closing in single Pol β-DNA complexes upon addition of complementary nucleotides and derived rates of conformational changes. We further found that, while incorrect nucleotides are quickly rejected, they nonetheless stabilize the polymerase-DNA complex, suggesting that Pol β, when bound to a lesion, has a strong commitment to nucleotide incorporation and thus repair. In summary, the observation and quantification of fingers movement in human Pol β reported here provide new insights into the delicate mechanisms of prechemistry nucleotide selection.


1991 ◽  
Vol 23 (5) ◽  
pp. 697-708 ◽  
Author(s):  
G Siegel ◽  
A Walter ◽  
K Rückborn ◽  
E Buddecke ◽  
A Schmidt ◽  
...  

2019 ◽  
Vol 11 (14) ◽  
pp. 1811-1825 ◽  
Author(s):  
Claire Raingeval ◽  
Isabelle Krimm

In this review, we report NMR studies of ligand–GPCR interactions, including both ligand-observed and protein-observed NMR experiments. Published studies exemplify how NMR can be used as a powerful tool to design novel GPCR ligands and investigate the ligand-induced conformational changes of GPCRs. The strength of NMR also lies in its capability to explore the diverse signaling pathways and probe the allosteric modulation of these highly dynamic receptors. By offering unique opportunities for the identification, structural and functional characterization of GPCR ligands, NMR will likely play a major role for the generation of novel molecules both as new tools for the understanding of the GPCR function and as therapeutic compounds for a large diversity of pathologies.


2020 ◽  
Vol 21 (7) ◽  
pp. 2527 ◽  
Author(s):  
Qingxin Li ◽  
CongBao Kang

Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.


2019 ◽  
Vol 20 (1) ◽  
pp. 139 ◽  
Author(s):  
CongBao Kang

In-cell nuclear magnetic resonance (NMR) is a method to provide the structural information of a target at an atomic level under physiological conditions and a full view of the conformational changes of a protein caused by ligand binding, post-translational modifications or protein–protein interactions in living cells. Previous in-cell NMR studies have focused on proteins that were overexpressed in bacterial cells and isotopically labeled proteins injected into oocytes of Xenopus laevis or delivered into human cells. Applications of in-cell NMR in probing protein modifications, conformational changes and ligand bindings have been carried out in mammalian cells by monitoring isotopically labeled proteins overexpressed in living cells. The available protocols and successful examples encourage wide applications of this technique in different fields such as drug discovery. Despite the challenges in this method, progress has been made in recent years. In this review, applications of in-cell NMR are summarized. The successful applications of this method in mammalian and bacterial cells make it feasible to play important roles in drug discovery, especially in the step of target engagement.


Langmuir ◽  
1997 ◽  
Vol 13 (21) ◽  
pp. 5577-5582 ◽  
Author(s):  
Piyali Goon ◽  
S. Das ◽  
C. J. Clemett ◽  
G. J. T. Tiddy ◽  
V. V. Kumar

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3133 ◽  
Author(s):  
Danila A. Iakovlev ◽  
Irina V. Alekseeva ◽  
Yury N. Vorobjev ◽  
Nikita A. Kuznetsov ◽  
Olga S. Fedorova

Human SMUG1 (hSMUG1) hydrolyzes the N-glycosidic bond of uracil and some uracil lesions formed in the course of epigenetic regulation. Despite the functional importance of hSMUG1 in the DNA repair pathway, the damage recognition mechanism has been elusive to date. In the present study, our objective was to build a model structure of the enzyme–DNA complex of wild-type hSMUG1 and several hSMUG1 mutants containing substitution F98W, H239A, or R243A. Enzymatic activity of these mutant enzymes was examined by polyacrylamide gel electrophoresis analysis of the reaction product formation and pre-steady-state analysis of DNA conformational changes during enzyme–DNA complex formation. It was shown that substitutions F98W and H239A disrupt specific contacts generated by the respective wild-type residues, namely stacking with a flipped out Ura base in the damaged base-binding pocket or electrostatic interactions with DNA in cases of Phe98 and His239, respectively. A loss of the Arg side chain in the case of R243A reduced the rate of DNA bending and increased the enzyme turnover rate, indicating facilitation of the product release step.


Sign in / Sign up

Export Citation Format

Share Document