scholarly journals The assemblage B of Giardia duodenalis is the most common assemblage in isolates from southeast of Iran

2017 ◽  
Vol 7 (12) ◽  
pp. 715-718 ◽  
Author(s):  
Akram Rostaminia ◽  
◽  
Adel Ebrahimzadeh ◽  
Mahnaz Shahrakipoor ◽  
◽  
...  
2020 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Salem Belkessa ◽  
Daniel Thomas-Lopez ◽  
Karim Houali ◽  
Farida Ghalmi ◽  
Christen Rune Stensvold

The molecular epidemiology of giardiasis in Africa remains unclear. A study was carried out across four hospitals in Algeria. A total of 119 fecal samples from 55 children, 37 adults, and 27 individuals of undetermined age, all scored positive for intestinal parasites by microscopy, and were screened by real-time PCR for Giardia. Molecular characterization of Giardia was performed by assemblage-specific PCR and PCR targeting the triose phosphate isomerase gene (tpi). Of the 119 samples, 80 (67%) were Giardia-positive by real-time PCR. For 48 moderately-highly real-time PCR-positive samples, tpi genotyping assigned 22 samples to Assemblage A and 26 to Assemblage B. Contrary to Assemblage A, Assemblage B exhibited substantial genetic diversity and allelic heterozygosity. Assemblage-specific PCR proved to be specific for discriminating Assemblage A or B but not as sensitive as tpi genotyping. We confirmed that real-time PCR is more sensitive than microscopy for detecting Giardia in stool samples and that robust amplification and sequencing of the tpi gene is feasible when moderate-to-strongly real-time PCR-positive samples are used. This study is one of the few performed in Africa providing genotyping data on Giardia infections in humans. Both assemblages A and B were commonly seen and not associated with specific sociodemographic data.


Parasitology ◽  
2018 ◽  
Vol 146 (9) ◽  
pp. 1123-1130 ◽  
Author(s):  
Paul M. Bartley ◽  
Beeke K. Roehe ◽  
Sarah Thomson ◽  
Hannah J. Shaw ◽  
Frederieke Peto ◽  
...  

AbstractThis study aimed to determine the prevalence and assemblages of Giardia duodenalis present in Scottish beef and dairy cattle at different ages, to try to ascertain if cattle could play a role in the spread of zoonotic assemblages of Giardia. A total of 388 fecal samples (128 beef and 253 dairy, seven of unknown breed) were collected from 19 farms in Scotland. Samples were sub-divided by host age, 1, 2, 3, 4, 5 and 6, 7–24 and ⩾25 weeks. DNA was extracted and tested by PCR to detect G. duodenalis DNA. Of the 388 samples, 126 tested positive, giving an overall prevalence of 32.5%, with positive samples being observed in all age groups tested. The prevalence in dairy cattle was 44.7% (113/235), which was significantly higher (P < 0.001) than the prevalence in beef cattle 10.1% (13/128). Sequence analysis demonstrated the presence of assemblage E (77.2%, sequence types E-S1–E-S5), assemblage B (18.2%) and assemblage A (sub-assemblages AI-AII) (4.6%). These data demonstrate that G. duodenalis is found routinely in both dairy and beef cattle throughout Scotland; the presence of assemblages A and B also indicates that cattle may play a role in the spread of potentially zoonotic assemblages of Giardia.


2012 ◽  
Vol 6 (6) ◽  
pp. e1677 ◽  
Author(s):  
Ralf Ignatius ◽  
Jean Bosco Gahutu ◽  
Christian Klotz ◽  
Christian Steininger ◽  
Cyprien Shyirambere ◽  
...  

2012 ◽  
Vol 140 (11) ◽  
pp. 2023-2027 ◽  
Author(s):  
S. LAISHRAM ◽  
A. KANNAN ◽  
P. RAJENDRAN ◽  
G. KANG ◽  
S. S. R. AJJAMPUR

SUMMARYThe assemblages of Giardia duodenalis in 25 children with and 25 children without diarrhoea and 24 adults with gastrointestinal symptoms in South India were determined. Polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) targeting the glutamate dehydrogenase (gdh), β-giardin and triosephosphate isomerase (tpi) genes was used. The tpi PCR was the most sensitive and detected G. duodenalis in all 74 microscopy-positive samples, while gdh and β-giardin PCR were positive in 62·2% and 56·8% of the samples. Assemblage B was predominant in both children and adults (82·4%) followed by assemblage AII (9·4%); assemblage AI was not detected. Infections with both assemblages A and B (detected by tpi PCR–RFLP) were seen exclusively in children and the mixed assemblage BIII and BIV (detected by gdh PCR–RFLP) was more common in children than adults (P=0·058).


Parasitology ◽  
2013 ◽  
Vol 141 (2) ◽  
pp. 206-215 ◽  
Author(s):  
ÁNGELA FERNÁNDEZ-ÁLVAREZ ◽  
AARÓN MARTÍN-ALONSO ◽  
NÉSTOR ABREU-ACOSTA ◽  
CARLOS FELIU ◽  
JEAN-PIERRE HUGOT ◽  
...  

SUMMARYThe flagellated parasite Giardia duodenalis is known as one of the most common causes of protozoal diarrhoea in both humans and animals worldwide. The aim of the present work was to perform the first study of G. duodenalis in rodents in the Canary Islands (Spain) and analyse the level of genetic variation and the potential zoonotic role of the isolates. Stool samples were collected from 284 wild rodents and Giardia cysts were detected by light microscopy. The overall prevalence of giardiasis was 25·4% and ranged from 19·4% in El Hierro to 34% in Gran Canaria. Positive samples were further characterized by PCR and nucleotide sequencing of the triose phosphate isomerase (TPI), β-giardin (BG) and glutamate dehydrogenase (GDH) genes. Our study revealed assemblage G as the most frequent genotype and identified two rodent-infecting G. duodenalis haplotypes of this assemblage, HI and HII. Phylogenetic analysis supported the monophyly of haplotype HI, which we suggest to be considered as a novel G. duodenalis sub-assemblage GII, due to the high genetic distances among this sub-genotype and assemblage G. Furthermore, G. duodenalis assemblage B was detected in an inhabited area in La Palma, a fact that may pose a potential risk of G. duodenalis transmission from rodents to humans.


Author(s):  
Matthew H. Seabolt ◽  
Konstantinos T. Konstantinidis ◽  
Dawn M. Roellig

Giardia duodenalis (syn. G. lamblia, G. intestinalis) is the causative agent of giardiasis, one of the most common diarrheal infections in humans. Evolutionary relationships among G. duodenalis genotypes (or subtypes) of assemblage B, one of two genetic assemblages causing the majority of human infections, remain unclear due to poor phylogenetic resolution of current typing methods. Here, we devised a methodology to identify new markers for a streamlined multi-locus sequence typing (MLST) scheme based on comparisons of all core genes against the phylogeny of whole-genome sequences (WGS). Our analysis identified three markers with comparable resolution to WGS data. Using newly designed PCR primers for our novel MLST loci, we typed an additional 68 strains of assemblage B. Analyses of these strains and previously determined genome sequences showed that genomes of this assemblage can be assigned to 16 clonal complexes, each with unique gene content that is apparently tuned to differential virulence and ecology. Obtaining new genomes of Giardia spp. and other eukaryotic microbial pathogens remains challenging due to difficulties in culturing the parasites in the laboratory. Hence, the methods described here are expected to be widely applicable to other pathogens of interest and advance understanding of their ecology and evolution. IMPORTANCE Giardia duodenalis assemblage B is a major waterborne pathogen and the most commonly identified genotype causing human giardiasis worldwide. The lack of morphological characters for classification requires the use of molecular techniques for strain differentiation, however, the absence of scalable and affordable NGS-based typing methods has prevented meaningful advancements in high resolution molecular typing for further understanding of the evolution and epidemiology of Assemblage B. Prior studies have reported high sequence diversity but low phylogenetic resolution at standard loci in Assemblage B, highlighting the necessity of identifying new markers for accurate and robust molecular typing. Data from comparative analyses of available genomes in this study identified three loci that together form a novel high-resolution typing scheme with high concordance to whole-genome-based phylogenomics and which should aid in future public health endeavors related to this parasite. In addition, data from newly characterized strains suggest evidence of biogeographic and ecologic endemism.


2021 ◽  
Vol 15 (3) ◽  
pp. e0009277
Author(s):  
Andreas Woschke ◽  
Mirko Faber ◽  
Klaus Stark ◽  
Martha Holtfreter ◽  
Frank Mockenhaupt ◽  
...  

Background Giardia duodenalis is a leading cause of gastroenteritis worldwide. Humans are mainly infected by two different subtypes, i.e., assemblage A and B. Genotyping is hampered by allelic sequence heterozygosity (ASH) mainly in assemblage B, and by occurrence of mixed infections. Here we assessed the suitability of current genotyping protocols of G. duodenalis for epidemiological applications such as molecular tracing of transmission chains. Methodology/Principal findings Two G. duodenalis isolate collections, from an outpatient tropical medicine clinic and from several primary care laboratories, were characterized by assemblage-specific qPCR (TIF, CATH gene loci) and a common multi locus sequence typing (MLST; TPI, BG, GDH gene loci). Assemblage A isolates were further typed at additional loci (HCMP22547, CID1, RHP26, HCMP6372, DIS3, NEK15411). Of 175/202 (86.6%) patients the G. duodenalis assemblage could be identified: Assemblages A 25/175 (14.3%), B 115/175 (65.7%) and A+B mixed 35/175 (20.0%). By incorporating allelic sequence heterozygosity in the analysis, the three marker MLST correctly identified 6/ 9 (66,7%) and 4/5 (80.0%) consecutive samples from chronic assemblage B infections in the two collections, respectively, and identified a cluster of five independent patients carrying assemblage B parasites of identical MLST type. Extended MLST for assemblage A altogether identified 5/6 (83,3%) consecutive samples from chronic assemblage A infections and 15 novel genotypes. Based on the observed A+B mixed infections it is estimated that only 75% and 50% of assemblage A or B only cases represent single strain infections, respectively. We demonstrate that typing results are consistent with this prediction. Conclusions/Significance Typing of assemblage A and B isolates with resolution for epidemiological applications is possible but requires separate genotyping protocols. The high frequency of multiple infections and their impact on typing results are findings with immediate consequences for result interpretation in this field.


2022 ◽  
Vol 8 ◽  
Author(s):  
Pamela C. Köster ◽  
Eva Martínez-Nevado ◽  
Andrea González ◽  
María T. Abelló-Poveda ◽  
Hugo Fernández-Bellon ◽  
...  

We assessed the occurrence, genetic diversity, and zoonotic potential of four protozoan (Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Giardia duodenalis), one stramenopile (Blastocystis sp.), one microsporidia (Enterocytozoon bieneusi), and two ciliate (Balantioides coli, Troglodytella abrassarti) intestinal parasite or commensal protist species in captive non-human primates (NHP) and their zookeepers from six European zoological gardens in France (n = 1), Germany (n = 1), and Spain (n = 4). Faecal samples from NHP (n = 454) belonging to 63 species within 35 genera and humans (n = 70) were collected at two sampling periods in each participating institution between October 2018-August 2021. Detection and species identification was accomplished by PCR and Sanger sequencing of the ssu rRNA and/or ITS genes. Sub-genotyping analyses using specific markers were conducted on isolates positive for G. duodenalis (gdh, bg, tpi) and Cryptosporidium spp. (gp60). Overall, 41.0% (186/454) and 30.0% (21/70) of the faecal samples of NHP and human origin tested positive for at least one intestinal protist species, respectively. In NHP, Blastocystis sp. was the most prevalent protist species found (20.3%), followed by G. duodenalis (18.1%), E. dispar (7.9%), B. coli and T. abrassarti (1.5% each), and Cryptosporidium spp. and E. bieneusi (0.9% each). Occurrence rates varied largely among NHP host species, sampling periods, and zoological institutions. The predominant protist species found in humans was Blastocystis sp. (25.7%), followed by Cryptosporidium spp. (2.9%), E. dispar (1.4%), and G. duodenalis (1.4%). Sequencing of PCR-positive amplicons in human and/or NHP confirmed the presence of Cryptosporidium in six isolates (C. hominis: 66.7%, C. parvum: 33.3%), G. duodenalis in 18 isolates (assemblage A: 16.7%, assemblage B: 83.3%), Blastocystis in 110 isolates (ST1:38.2%, ST2:11.8%, ST3: 18.2%, ST4: 9.1%, ST5: 17.3%, ST8: 2.7%, ST13: 0.9%), and E. bieneusi in four isolates (CM18: 75.0%, Type IV: 25.0%). Zoonotic transmission events involving Blastocystis ST1–ST4 were identified in four zoological institutions. Zoonotic transmission of C. hominis was highly suspected, but not fully demonstrated, in one of them. Monitoring of intestinal protist species might be useful for assessing health status of captive NHP and their zookeepers, and to identify transmission pathways of faecal-orally transmitted pathogens.


2013 ◽  
Vol 76 (2) ◽  
pp. 307-313 ◽  
Author(s):  
BRENT DIXON ◽  
LORNA PARRINGTON ◽  
ANGELA COOK ◽  
FRANK POLLARI ◽  
JEFFREY FARBER

Numerous foodborne outbreaks of diarrheal illness associated with the consumption of produce contaminated with protozoan parasites have been reported in North America in recent years. The present study reports on the presence of Cyclospora, Cryptosporidium, and Giardia in precut salads and leafy greens purchased at retail in Ontario, Canada. A total of 544 retail samples were collected between April 2009 and March 2010 and included a variety of salad blends and individual leafy greens. Most of these products were grown in the United States, with some from Canada and Mexico. Parasites were eluted and concentrated before detection by PCR and immunofluorescence microscopy. DNA sequences were aligned with reference sequences in GenBank. Cyclospora spp. were identified by PCR–restriction fragment length polymorphism in nine (1.7%) samples and by DNA sequence analysis. Cryptosporidium spp. were identified in 32 (5.9%) samples; 29 were sequenced and aligned with the zoonotic species Cryptosporidium parvum. Giardia duodenalis was identified in 10 (1.8%) samples, and of the 9 samples successfully sequenced, 7 aligned with G. duodenalis assemblage B and 2 with assemblage A, both of which are also zoonotic. The presence of Cryptosporidium oocysts and Giardia cysts was confirmed in some of the PCR-positive samples using microscopy, while Cyclospora-like oocysts were observed in most of the Cyclospora PCR-positive samples. The relatively high prevalence of these parasites in packaged salads and leafy greens establishes a baseline for further studies and suggests a need for additional research with respect to the possible sources of contamination of these foods, the determination of parasite viability and virulence, and means to reduce foodborne transmission to humans.


Sign in / Sign up

Export Citation Format

Share Document