scholarly journals Efficiency of Fresh and Fermented Banana Stem in Low Protein Diet on Nutrient Digestibility, Productive Performance and Intestinal Morphology of Crossbred Pig ((Thai native x Meishan) x Duroc)

2020 ◽  
Vol 19 (1) ◽  
pp. 51-64
Author(s):  
Chaiwat Arjin ◽  
◽  
Chanmany Souphannavong ◽  
Apinya Sartsook ◽  
Mintra Seel-audom ◽  
...  

Banana stem is a common feed component for raising pigs in mountainous Southeast Asia. However, its nutritive value and digestibility are low. This study was carried out to investigate the effects of unfermented and fermented banana stems on crossbred pigs concerning nutrient digestibility, productive performance, and intestinal morphology. Initially, an in vitro ileal digestibility test was performed for the following feedstuffs: fresh banana stem (BS), fermented banana stem (FBS), concentrate (C), fresh banana stem + concentrate (BSC), and fermented banana stem + concentrate (FBSC). For the 120-day experiment, 16 crossbred pigs were divided into two groups and fed with BSC and FBSC. They were placed in individual cages and subsequently moved to metabolic cages for seven days to determine apparent total tract digestibility (ATTD). Finally, all pigs were slaughtered and their small intestines were analyzed for intestinal morphology. The results show that pure fresh and fermented banana stems had low digestibility. However, their digestibility increased by 50% when mixed with concentrate. Crossbred pigs fed BSC and FBSC did not exhibit significant differences in their performance, but the intestinal morphology of the FBSC group had improved intestinal morphology, especially the villi height. In conclusion, both fresh and fermented banana stems can be recommended in a low protein diet as feed for crossbred pigs in an improved production system. This is relevant for raising pigs in mountainous areas, as it has the potential to reduce feed cost and maintain production performance.

2021 ◽  
Vol 8 ◽  
Author(s):  
Miaolin Ma ◽  
Shunju Geng ◽  
Meiling Liu ◽  
Lihong Zhao ◽  
Jianyun Zhang ◽  
...  

This study investigated the effects of different levels of methionine (Met) in a low protein diet on the production performance, reproductive system, metabolism, and gut microbial composition of laying hens to reveal the underlying molecular mechanism of Met in a low protein diet on the host metabolism and gut microbial composition and function of hens. A total of 360 healthy 38-week-old Peking Pink laying hens with similar body conditions and egg production (EP) were randomly divided into four groups with nine replicates per treatment and 10 hens per replicate. The hens in each treatment group were fed low protein diets containing different levels of Met (0.25, 0.31, 0.38, and 0.47%, respectively) for 12 weeks. Feed and water were provided ad libitum throughout the trial period. The results showed that, compared with the 0.25% Met group, the final body weight (FBW), average daily gain (ADG), EP, egg weight (EW), and average daily feed intake (ADFI) in the other groups were significantly increased and feed egg ratio (FER) was decreased. Meanwhile, the EW and yield of abdominal fat (AFY) in the 0.47% Met group were higher than those in other groups. The triglyceride (TG), estradiol (E2), total protein (TP), albumin (ALB), and immunoglobulin A (IgA) in the 0.38 and 0.47% Met groups were higher than those in other groups. In addition, 16S rRNA gene sequencing revealed that there was no difference in the Sobs index, ACE index, and Shannon index among all groups. However, it is worth noting that feeding low protein diets with Met changed the gut microbial composition (e.g., the supplementation of Met increased the level of Lactobacillus and decreased the proportion of Faecalibacterium). Also, our results showed that the changes in gut microbial composition induced by the diets with different levels of Met were closely related to the changes of key parameters: ADFI, EW, FBW, TG, EM, EP, ADG, FER, and uric acid (UA). Our results highlight the role of adding an appropriate amount of Met to the low protein diet in laying hens, which could improve the gut microbial composition, production performance, reproductive system, and nutrient metabolism of laying hens. In conclusion, this study suggested that when the Met level was 0.38%, the production performance of the laying hens was pretty good.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Meng Kang ◽  
Jie Yin ◽  
Jie Ma ◽  
Xin Wu ◽  
Ke Huang ◽  
...  

Previous study showed that low protein diet-fed pigs are characterized by lower histidine concentration in the serum and muscle, suggesting that histidine may involve in protein-restricted response. Thus, the current study mainly investigated the effects of dietary histidine on growth performance, blood biochemical parameters and amino acids, intestinal morphology, and microbiota communities in low protein diet-challenged-piglets. The results showed that protein restriction inhibited growth performance, blood biochemical parameters and amino acids, and gut microbiota but had little effect on intestinal morphology. Dietary supplementation with histidine markedly enhanced serum histidine level and restored tryptophan concentration in low protein diet-fed piglets, while growth performance and intestinal morphology were not markedly altered in histidine-treated piglets. In addition, histidine exposure failed to affect bacterial diversity (observed species, Shannon, Simpson, Chao1, ACE, and phylogenetic diversity), but histidine-treated piglets exhibited higher abundances of Butyrivibrio and Bacteroides compared with the control and protein-restricted piglets. In conclusion, dietary histidine in low protein diet enhanced histidine concentration and affected gut microbiota (Butyrivibrio and Bacteroides) but failed to improve growth performance and intestinal morphology.


2012 ◽  
Vol 23 (1) ◽  
pp. 151-155 ◽  
Author(s):  
Hai-hua Zhang ◽  
Guang-yu Li ◽  
Xiu-mei Xing ◽  
Er-jun Ren ◽  
Ying Yang ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 180 ◽  
Author(s):  
Defu Yu ◽  
Weiyun Zhu ◽  
Suqin Hang

Using protein-restriction diets becomes a potential strategy to save the dietary protein resources. However, the mechanism of low-protein diets influencing pigs’ growth performance is still controversial. This study aimed to investigate the effect of protein-restriction diets on gastrointestinal physiology and gut microbiota in pigs. Eighteen weaned piglets were randomly allocated to three groups with different dietary protein levels. After a 16-week trial, the results showed that feeding a low-protein diet to pigs impaired the epithelial morphology of duodenum and jejunum (p < 0.05) and reduced the concentration of many plasma hormones (p < 0.05), such as ghrelin, somatostatin, glucose-dependent insulin-tropic polypeptide, leptin, and gastrin. The relative abundance of Streptococcus and Lactobacillus in colon and microbiota metabolites was also decreased by extreme protein-restriction diets (p < 0.05). These findings suggested that long-term ingestion of a protein-restricted diet could impair intestinal morphology, suppress gut hormone secretion, and change the microbial community and fermentation metabolites in pigs, while the moderately low-protein diet had a minimal effect on gut function and did not impair growth performance.


animal ◽  
2021 ◽  
Vol 15 (12) ◽  
pp. 100408
Author(s):  
M. Muñoz ◽  
M.A. Fernández-Barroso ◽  
A. López-García ◽  
C. Caraballo ◽  
Y. Nuñez ◽  
...  

2018 ◽  
Vol 98 (3) ◽  
pp. 488-497 ◽  
Author(s):  
D.H. Nguyen ◽  
S.I. Lee ◽  
J.Y. Cheong ◽  
I.H. Kim

A total of 180 crossbred pigs [(Landrace × Yorkshire) × Duroc] with an average body weight of 22.61 ± 1.23 kg were used in an 18 wk study to determine the effect of protease and bromelain in low-protein diets in grower–finisher pigs. Dietary treatments included: T1, basal diet treatment; T2, low-protein treatment; T3 (T2 + 0.2 g kg−1 protease); and T4 (T2 + 0.3 g kg−1 bromelain). Pigs fed protease- and bromelain-supplemented diets increased average daily gain and gain to feed ratio at week 18, dry matter and nitrogen digestibility at week 6, as well as energy digestibility at week 12, compared with low-protein diet (P < 0.05). Pigs fed T3 and T4 diets led to a trend of decreased (P < 0.05) blood urine nitrogen (BUN) and creatinine concentrations at the 12th wk. A reduction of ammonia (NH3) and hydrogen sulfide (H2S) emission was observed in pigs fed the dietary protease and bromelain supplementation at the 6th wk (P < 0.05). There was no effect on all parameters between the protease and bromelain supplementation treatments. In conclusion, supplementation of protease and bromelain to low-protein diet enhanced growth performance, nutrient digestibility, and reduced NH3 and H2S in growing–finishing pigs.


Sign in / Sign up

Export Citation Format

Share Document