Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model

2017 ◽  
Vol 5 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Abderrahmane Hadj Elmerabet ◽  
Houari Heireche ◽  
Abdelouahed Tounsi ◽  
Abdelwahed Semmah
2020 ◽  
Vol 7 (5) ◽  
pp. 591-602 ◽  
Author(s):  
Hamid M Sedighi ◽  
Mohammad Malikan ◽  
Ali Valipour ◽  
Krzysztof Kamil Żur

Abstract Hybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with the nonlocal vibrational behavior of carbon/boron-nitride nano-hetero-tubes in the presence of magneto-thermal environment. Euler–Bernoulli beam model in conjunction with the Eringen’s nonlocal theory of elasticity is adopted to derive the governing equation of motion. In order to conduct a nonlinear frequency analysis, the von-Kármán nonlinearity associated with moderate rotations is also considered. It is well known that temperature gradients can significantly change the dynamic behavior of nanotubes. On the other hand, the coefficients of thermal expansions of carbon and boron-nitride nanotubes are quite different that may affect the structural stability of hybrid nanotubes. Hence, to explore the vibration characteristic of such composite structures, the influence of magneto-thermal environment is also taken into account. Finally, the eigenvalue analysis is performed to exhibit the nonlinear mode shapes and natural frequencies of the system due to initial displacement. It is expected that the recognition of dynamic behavior of such hybrid nanotubes may open the doors to the creative design of next-generation nano-devices.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


2019 ◽  
Vol 22 (7) ◽  
pp. 470-482
Author(s):  
Samereh Ghazanfary ◽  
Fatemeh Oroojalian ◽  
Rezvan Yazdian-Robati ◽  
Mehdi Dadmehr ◽  
Amirhossein Sahebkar

Background: Boron Nitride Nanotubes (BNNTs) have recently emerged as an interesting field of study, because they could be used for the realization of developed, integrated and compact nanostructures to be formulated. BNNTs with similar surface morphology, alternating B and N atoms completely substitute for C atoms in a graphitic-like sheet with nearly no alterations in atomic spacing, with uniformity in dispersion in the solution, and readily applicable in biomedical applications with no obvious toxicity. Also demonstrating a good cell interaction and cell targeting. Aim and Objective: With a purpose of increasing the field of BNNT for drug delivery, a theoretical investigation of the interaction of Melatonin, Vitamin C, Glutathione and lipoic acid antioxidants using (9, 0) zigzag BNNTs is shown using density functional theory. Methods: The geometries corresponding to Melatonin, Vitamin C, Glutathione and lipoic acid and BNNT with different lengths were individually optimized with the DMOL3 program at the LDA/ DNP (fine) level of theory. Results: In the presence of external electric field Melatonin, Vitamin C, Glutathione and lipoic acid could be absorbed considerably on BNNT with lengths 22 and 29 Å, as the adsorption energy values in the presence of external electric field are considerably increased. Conclusion: The external electric field is an appropriate technique for adsorbing and storing antioxidants on BNNTs. Moreover, it is believed that applying the external electric field may be a proper method for controlling release rate of drugs.


2020 ◽  
Author(s):  
N. P. Boroznina ◽  
M. A. Vdovin ◽  
I. V. Zaporotskova ◽  
S. V. Boroznin ◽  
P. A. Zaporotskov

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruishi Qi ◽  
Ning Li ◽  
Jinlong Du ◽  
Ruochen Shi ◽  
Yang Huang ◽  
...  

AbstractDirectly mapping local phonon dispersion in individual nanostructures can advance our understanding of their thermal, optical, and mechanical properties. However, this requires high detection sensitivity and combined spatial, energy and momentum resolutions, thus has been elusive. Here, we demonstrate a four-dimensional electron energy loss spectroscopy technique, and present position-dependent phonon dispersion measurements in individual boron nitride nanotubes. By scanning the electron beam in real space while monitoring both the energy loss and the momentum transfer, we are able to reveal position- and momentum-dependent lattice vibrations at nanometer scale. Our measurements show that the phonon dispersion of multi-walled nanotubes is locally close to hexagonal-boron nitride crystals. Interestingly, acoustic phonons are sensitive to defect scattering, while optical modes are insensitive to small voids. This work not only provides insights into vibrational properties of boron nitride nanotubes, but also demonstrates potential of the developed technique in nanoscale phonon dispersion measurements.


Sign in / Sign up

Export Citation Format

Share Document