Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy

2017 ◽  
Vol 12 (5) ◽  
pp. 863-870 ◽  
Author(s):  
Yong-Min Kim ◽  
Tae-Hyuk Kwon ◽  
Seungchul Kim
2009 ◽  
Vol 10 (9) ◽  
pp. 2571-2576 ◽  
Author(s):  
Shinichiro Iwamoto ◽  
Weihua Kai ◽  
Akira Isogai ◽  
Tadahisa Iwata

Soft Matter ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. 1776-1784 ◽  
Author(s):  
Bryant L. Doss ◽  
Kiarash Rahmani Eliato ◽  
Keng-hui Lin ◽  
Robert Ros

Atomic force microscopy (AFM) is becoming an increasingly popular method for studying cell mechanics, however the existing analysis tools for determining the elastic modulus from indentation experiments are unable to quantitatively account for mechanical heterogeneity commonly found in biological samples.


RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 25789-25798 ◽  
Author(s):  
Sumit Arora ◽  
Michael Kappl ◽  
Mehra Haghi ◽  
Paul M. Young ◽  
Daniela Traini ◽  
...  

l-Leucine modified voriconazole spray dried micropartcles.


2011 ◽  
Vol 301 (3) ◽  
pp. L353-L360 ◽  
Author(s):  
Ryan O'Callaghan ◽  
Kathleen M. Job ◽  
Randal O. Dull ◽  
Vladimir Hlady

The mechanical properties of endothelial glycocalyx were studied using atomic force microscopy with a silica bead (diameter ∼18 μm) serving as an indenter. Even at indentations of several hundred nanometers, the bead exerted very low compressive pressures on the bovine lung microvascular endothelial cell (BLMVEC) glycocalyx and allowed for an averaging of stiffness in the bead-cell contact area. The elastic modulus of BLMVEC glycocalyx was determined as a pointwise function of the indentation depth before and after enzymatic degradation of specific glycocalyx components. The modulus-indentation depth profiles showed the cells becoming progressively stiffer with increased indentation. Three different enzymes were used: heparinases III and I and hyaluronidase. The main effects of heparinase III and hyaluronidase enzymes were that the elastic modulus in the cell junction regions increased more rapidly with the indentation than in BLMVEC controls, and that the effective thickness of glycocalyx was reduced. Cytochalasin D abolished the modulus increase with the indentation. The confocal profiling of heparan sulfate and hyaluronan with atomic force microscopy indentation data demonstrated marked heterogeneity of the glycocalyx composition between cell junctions and nuclear regions.


Sign in / Sign up

Export Citation Format

Share Document